These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2675631)

  • 1. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology.
    Goldsmith HL; Cokelet GR; Gaehtgens P
    Am J Physiol; 1989 Sep; 257(3 Pt 2):H1005-15. PubMed ID: 2675631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN; Berg RM
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1987; 5(4):335-45. PubMed ID: 3557819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuum mechanics model for the Fåhræus-Lindqvist effect.
    Farina A; Rosso F; Fasano A
    J Biol Phys; 2021 Sep; 47(3):253-270. PubMed ID: 34218404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inversion of Fahraeus effect and effect of mainstream flow on capillary hematocrit.
    Yen RT; Fung YC
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Apr; 42(4):578-86. PubMed ID: 863819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in microvascular networks. Experiments and simulation.
    Pries AR; Secomb TW; Gaehtgens P; Gross JF
    Circ Res; 1990 Oct; 67(4):826-34. PubMed ID: 2208609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect.
    Chebbi R
    J Biol Phys; 2015 Jun; 41(3):313-26. PubMed ID: 25702195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical model for the Fåhræus effect in medium-large microvessels.
    Farina A; Fasano A; Rosso F
    J Theor Biol; 2023 Feb; 558():111355. PubMed ID: 36402201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of red blood cell flow in small tubes by white blood cells.
    Thompson TN; La Celle PL; Cokelet GR
    Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium.
    Possenti L; di Gregorio S; Gerosa FM; Raimondi G; Casagrande G; Costantino ML; Zunino P
    Int J Numer Method Biomed Eng; 2019 Mar; 35(3):e3165. PubMed ID: 30358172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Nov; 24(8):. PubMed ID: 28801994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of the Fahraeus principle for microvessel networks.
    Pries AR; Ley K; Gaehtgens P
    Am J Physiol; 1986 Dec; 251(6 Pt 2):H1324-32. PubMed ID: 3789184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR; Neuhaus D; Gaehtgens P
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells.
    Dimakopoulos Y; Kelesidis G; Tsouka S; Georgiou GC; Tsamopoulos J
    Biorheology; 2015; 52(3):183-210. PubMed ID: 26406781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fahraeus effect and Fahraeus-Lindqvist effect].
    Azelvandre F; Oiknine C
    C R Acad Hebd Seances Acad Sci D; 1977 Feb; 284(7):577-80. PubMed ID: 403024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Robin Fåhraeus memorial lecture. Robin Fåhraeus--the scientist and the person.
    Copley AL
    Biorheology; 1989; 26(3):423-61. PubMed ID: 2667652
    [No Abstract]   [Full Text] [Related]  

  • 19. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR; Goldsmith HL
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.