These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 26756402)

  • 1. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK; Kaur H; Raghava GP
    Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
    Reza MS; Zhang H; Hossain MT; Jin L; Feng S; Wei Y
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved method for predicting beta-turn using support vector machine.
    Zhang Q; Yoon S; Welsh WJ
    Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.
    Hua S; Sun Z
    J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane protein topology prediction using support vector machines.
    Nugent T; Jones DT
    BMC Bioinformatics; 2009 May; 10():159. PubMed ID: 19470175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane helix and topology prediction using hierarchical SVM classifiers and an alternating geometric scoring function.
    Lo A; Chiu HS; Sung TY; Hsu WL
    Comput Syst Bioinformatics Conf; 2006; ():31-42. PubMed ID: 17369623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.
    Park B; Im J; Tuvshinjargal N; Lee W; Han K
    Comput Methods Programs Biomed; 2014 Nov; 117(2):158-67. PubMed ID: 25113160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM.
    Hayat M; Khan A
    J Theor Biol; 2012 Jan; 292():93-102. PubMed ID: 22001079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y; Xue Z; Xu J
    Proteins; 2006 Oct; 65(1):49-54. PubMed ID: 16894602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consensus contact prediction by linear programming.
    Gao X; Bu D; Li SC; Li M; Xu J
    Comput Syst Bioinformatics Conf; 2007; 6():323-34. PubMed ID: 17951835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of helix interactions and residue contacts in membrane proteins.
    Hönigschmid P; Frishman D
    J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved residue contact prediction using support vector machines and a large feature set.
    Cheng J; Baldi P
    BMC Bioinformatics; 2007 Apr; 8():113. PubMed ID: 17407573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles.
    Wang Y; Xue Z; Shen G; Xu J
    Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.