These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26756464)

  • 1. Ligand-Mediated Interactions between Nanoscale Surfaces Depend Sensitively and Nonlinearly on Temperature, Facet Dimensions, and Ligand Coverage.
    Widmer-Cooper A; Geissler PL
    ACS Nano; 2016 Feb; 10(2):1877-87. PubMed ID: 26756464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientational ordering of passivating ligands on CdS nanorods in solution generates strong rod-rod interactions.
    Widmer-Cooper A; Geissler P
    Nano Lett; 2014 Jan; 14(1):57-65. PubMed ID: 24295449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular ordering and phase transitions in alkanol monolayers at the water-hexane interface.
    Tikhonov AM; Pingali SV; Schlossman ML
    J Chem Phys; 2004 Jun; 120(24):11822-38. PubMed ID: 15268217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.
    Hannah DC; Gezelter JD; Schaller RD; Schatz GC
    ACS Nano; 2015 Jun; 9(6):6278-87. PubMed ID: 26020654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal and lateral interactions between thermosensitive nanoparticle monolayers in water.
    Banquy X; Charrault E; Giasson S
    J Phys Chem B; 2010 Aug; 114(30):9721-8. PubMed ID: 20614943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of Capping Ligands on Nanoplates: Facet-Edge-Induced Disorder and Self-Assembly-Related Ordering Revealed by Sum Frequency Generation Spectroscopy.
    Zhang H; Li F; Xiao Q; Lin H
    J Phys Chem Lett; 2015 Jun; 6(12):2170-6. PubMed ID: 26266587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle.
    Wang Y; Neyman A; Arkhangelsky E; Gitis V; Meshi L; Weinstock IA
    J Am Chem Soc; 2009 Dec; 131(47):17412-22. PubMed ID: 19902946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control.
    Ramezani-Dakhel H; Bedford NM; Woehl TJ; Knecht MR; Naik RR; Heinz H
    Nanoscale; 2017 Jun; 9(24):8401-8409. PubMed ID: 28604905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-mediated short-range attraction drives aggregation of charged monolayer-protected gold nanoparticles.
    Van Lehn RC; Alexander-Katz A
    Langmuir; 2013 Jul; 29(28):8788-98. PubMed ID: 23782293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: temperature-controlled opening and closing of nanopores.
    Gutzler R; Sirtl T; Dienstmaier JF; Mahata K; Heckl WM; Schmittel M; Lackinger M
    J Am Chem Soc; 2010 Apr; 132(14):5084-90. PubMed ID: 20235537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale surface chemistry.
    Madey TE; Pelhos K; Wu Q; Barnes R; Ermanoski I; Chen W; Kolodziej JJ; Rowe JE
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6503-8. PubMed ID: 11904376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle zips: vertical emulsion films with particle monolayers at their surfaces.
    Horozov TS; Aveyard R; Clint JH; Neumann B
    Langmuir; 2005 Mar; 21(6):2330-41. PubMed ID: 15752023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of nanoscale chemical features on micron-scale adhesion: crossover from heterogeneity-dominated to mean-field behavior.
    Duffadar R; Kalasin S; Davis JM; Santore MM
    J Colloid Interface Sci; 2009 Sep; 337(2):396-407. PubMed ID: 19539949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation Mechanism of Well-Ordered Densely Packed Nanoparticle Superlattices Deposited from Gas Phase on Template-Free Surfaces.
    Liu C; Liu F; Jin C; Zhang S; Zhang L; Han M
    Nanoscale Res Lett; 2021 Nov; 16(1):172. PubMed ID: 34850309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions.
    Ling XY; Malaquin L; Reinhoudt DN; Wolf H; Huskens J
    Langmuir; 2007 Sep; 23(20):9990-9. PubMed ID: 17705519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Precipitation on Nanoparticles": Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles.
    Chu Z; Han Y; Král P; Klajn R
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7023-7027. PubMed ID: 29673022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional self-assembly of hydrophobic nanoparticles at oil/water interfaces via nanoscale phase separation of mixed ligands.
    Liu SJ; Li YJ; Wang YM; Liu X; Yeung ES
    J Colloid Interface Sci; 2013 Oct; 407():243-9. PubMed ID: 23895950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.