These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26756608)

  • 21. Instanton theory of tunneling in molecules with asymmetric isotopic substitutions.
    Jahr E; Laude G; Richardson JO
    J Chem Phys; 2020 Sep; 153(9):094101. PubMed ID: 32891112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divide-and-Conquer Method for Instanton Rate Theory.
    Winter P; Richardson JO
    J Chem Theory Comput; 2019 May; 15(5):2816-2825. PubMed ID: 30896945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer Learning for Affordable and High-Quality Tunneling Splittings from Instanton Calculations.
    Käser S; Richardson JO; Meuwly M
    J Chem Theory Comput; 2022 Nov; 18(11):6840-6850. PubMed ID: 36279109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.
    Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3086-99. PubMed ID: 15268461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2014 Nov; 141(17):174312. PubMed ID: 25381519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-dimensional tunneling calculations in the imaginary-frequency, rectilinear saddle-point normal mode.
    Wang Y; Bowman JM
    J Chem Phys; 2008 Sep; 129(12):121103. PubMed ID: 19044995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation.
    Buchowiecki M; Vanícek J
    J Chem Phys; 2010 May; 132(19):194106. PubMed ID: 20499950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory.
    Richardson JO; Althorpe SC
    J Chem Phys; 2009 Dec; 131(21):214106. PubMed ID: 19968336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rate constants from instanton theory via a microcanonical approach.
    McConnell SR; Löhle A; Kästner J
    J Chem Phys; 2017 Feb; 146(7):074105. PubMed ID: 28228015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perspective: Ring-polymer instanton theory.
    Richardson JO
    J Chem Phys; 2018 May; 148(20):200901. PubMed ID: 29865828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissipative tunneling rates through the incorporation of first-principles electronic friction in instanton rate theory. II. Benchmarks and applications.
    Litman Y; Pós ES; Box CL; Martinazzo R; Maurer RJ; Rossi M
    J Chem Phys; 2022 May; 156(19):194107. PubMed ID: 35597654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunneling Splittings in Water Clusters from Path Integral Molecular Dynamics.
    Vaillant CL; Wales DJ; Althorpe SC
    J Phys Chem Lett; 2019 Nov; 10(22):7300-7304. PubMed ID: 31682130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiconfigurational time-dependent Hartree calculations for tunneling splittings of vibrational states: Theoretical considerations and application to malonaldehyde.
    Hammer T; Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2009 Dec; 131(22):224109. PubMed ID: 20001026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calculation of the vibrational excited states of malonaldehyde and their tunneling splittings with the multi-configuration time-dependent Hartree method.
    Schröder M; Meyer HD
    J Chem Phys; 2014 Jul; 141(3):034116. PubMed ID: 25053310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Two-Step Procedures for Locating Transition States of Surface Reactions.
    Nikodem A; Matveev AV; Zheng BX; Rösch N
    J Chem Theory Comput; 2013 Jan; 9(1):588-99. PubMed ID: 26589057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic isotope effects calculated with the instanton method.
    Meisner J; Rommel JB; Kästner J
    J Comput Chem; 2011 Dec; 32(16):3456-63. PubMed ID: 21898468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.
    Zhao Y; Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3100-7. PubMed ID: 15268462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ring-Polymer Instanton Tunneling Splittings of Tropolone and Isotopomers using a Δ-Machine Learned CCSD(T) Potential: Theory and Experiment Shake Hands.
    Nandi A; Laude G; Khire SS; Gurav ND; Qu C; Conte R; Yu Q; Li S; Houston PL; Gadre SR; Richardson JO; Evangelista FA; Bowman JM
    J Am Chem Soc; 2023 May; 145(17):9655-9664. PubMed ID: 37078852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.
    Wang Y; Bowman JM
    J Chem Phys; 2013 Oct; 139(15):154303. PubMed ID: 24160509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms.
    Woodcock HL; Hodoscek M; Brooks BR
    J Phys Chem A; 2007 Jul; 111(26):5720-8. PubMed ID: 17555303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.