These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 26756644)
1. Creation of a Hybrid Scaffold with Dual Configuration of Aligned and Random Electrospun Fibers. Park SH; Kim MS; Lee B; Park JH; Lee HJ; Lee NK; Jeon NL; Suh KY ACS Appl Mater Interfaces; 2016 Feb; 8(4):2826-32. PubMed ID: 26756644 [TBL] [Abstract][Full Text] [Related]
2. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study. Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
4. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Park SH; Koh UH; Kim M; Yang DY; Suh KY; Shin JH Biofabrication; 2014 Jun; 6(2):024107. PubMed ID: 24695440 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. He L; Liao S; Quan D; Ma K; Chan C; Ramakrishna S; Lu J Acta Biomater; 2010 Aug; 6(8):2960-9. PubMed ID: 20193781 [TBL] [Abstract][Full Text] [Related]
7. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Chen MC; Sun YC; Chen YH Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301 [TBL] [Abstract][Full Text] [Related]
8. Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts. Yang GH; Jeon H; Kim G Biofabrication; 2017 Jun; 9(2):025035. PubMed ID: 28589919 [TBL] [Abstract][Full Text] [Related]
9. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Yeo M; Lee H; Kim GH Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918 [TBL] [Abstract][Full Text] [Related]
10. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue. Yeo M; Kim GH Small; 2018 Nov; 14(48):e1803491. PubMed ID: 30311453 [TBL] [Abstract][Full Text] [Related]
11. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. Yan J; Qiang L; Gao Y; Cui X; Zhou H; Zhong S; Wang Q; Wang H J Biomed Mater Res A; 2012 Feb; 100(2):527-35. PubMed ID: 22140085 [TBL] [Abstract][Full Text] [Related]
12. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Chaurey V; Block F; Su YH; Chiang PC; Botchwey E; Chou CF; Swami NS Acta Biomater; 2012 Nov; 8(11):3982-90. PubMed ID: 22789616 [TBL] [Abstract][Full Text] [Related]
14. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Pu J; Yuan F; Li S; Komvopoulos K Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495 [TBL] [Abstract][Full Text] [Related]
15. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. Wang HB; Mullins ME; Cregg JM; Hurtado A; Oudega M; Trombley MT; Gilbert RJ J Neural Eng; 2009 Feb; 6(1):016001. PubMed ID: 19104139 [TBL] [Abstract][Full Text] [Related]
16. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046 [TBL] [Abstract][Full Text] [Related]
17. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Jana S; Leung M; Chang J; Zhang M Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344 [TBL] [Abstract][Full Text] [Related]
18. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering. Pu J; Komvopoulos K Acta Biomater; 2014 Jun; 10(6):2718-26. PubMed ID: 24434536 [TBL] [Abstract][Full Text] [Related]
19. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. Hu JJ; Chao WC; Lee PY; Huang CH J Mech Behav Biomed Mater; 2012 Sep; 13():140-55. PubMed ID: 22854316 [TBL] [Abstract][Full Text] [Related]
20. Electrospun poly(hydroxybutyrate-co-hydroxyvalerate) fibrous membranes consisting of parallel-aligned fibers or cross-aligned fibers: characterization and biological evaluation. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2011; 22(18):2475-97. PubMed ID: 21144165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]