BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26756644)

  • 1. Creation of a Hybrid Scaffold with Dual Configuration of Aligned and Random Electrospun Fibers.
    Park SH; Kim MS; Lee B; Park JH; Lee HJ; Lee NK; Jeon NL; Suh KY
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2826-32. PubMed ID: 26756644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.
    Jin G; Lee S; Kim SH; Kim M; Jang JH
    Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding.
    Park SH; Koh UH; Kim M; Yang DY; Suh KY; Shin JH
    Biofabrication; 2014 Jun; 6(2):024107. PubMed ID: 24695440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells.
    He L; Liao S; Quan D; Ma K; Chan C; Ramakrishna S; Lu J
    Acta Biomater; 2010 Aug; 6(8):2960-9. PubMed ID: 20193781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts.
    Yang GH; Jeon H; Kim G
    Biofabrication; 2017 Jun; 9(2):025035. PubMed ID: 28589919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue.
    Yeo M; Kim GH
    Small; 2018 Nov; 14(48):e1803491. PubMed ID: 30311453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior.
    Yan J; Qiang L; Gao Y; Cui X; Zhou H; Zhong S; Wang Q; Wang H
    J Biomed Mater Res A; 2012 Feb; 100(2):527-35. PubMed ID: 22140085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment.
    Chaurey V; Block F; Su YH; Chiang PC; Botchwey E; Chou CF; Swami NS
    Acta Biomater; 2012 Nov; 8(11):3982-90. PubMed ID: 22789616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology.
    Tseng LF; Mather PT; Henderson JH
    Acta Biomater; 2013 Nov; 9(11):8790-801. PubMed ID: 23851156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo.
    Pu J; Yuan F; Li S; Komvopoulos K
    Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
    Wang HB; Mullins ME; Cregg JM; Hurtado A; Oudega M; Trombley MT; Gilbert RJ
    J Neural Eng; 2009 Feb; 6(1):016001. PubMed ID: 19104139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers.
    Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y
    J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.
    Pu J; Komvopoulos K
    Acta Biomater; 2014 Jun; 10(6):2718-26. PubMed ID: 24434536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.
    Hu JJ; Chao WC; Lee PY; Huang CH
    J Mech Behav Biomed Mater; 2012 Sep; 13():140-55. PubMed ID: 22854316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun poly(hydroxybutyrate-co-hydroxyvalerate) fibrous membranes consisting of parallel-aligned fibers or cross-aligned fibers: characterization and biological evaluation.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2011; 22(18):2475-97. PubMed ID: 21144165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.