These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26756879)

  • 1. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering.
    Raucci MG; Giugliano D; Longo A; Zeppetelli S; Carotenuto G; Ambrosio L
    J Tissue Eng Regen Med; 2017 Aug; 11(8):2204-2216. PubMed ID: 26756879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide.
    Li M; Wang Y; Liu Q; Li Q; Cheng Y; Zheng Y; Xi T; Wei S
    J Mater Chem B; 2013 Jan; 1(4):475-484. PubMed ID: 32260818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells.
    Lee JH; Shin YC; Jin OS; Kang SH; Hwang YS; Park JC; Hong SW; Han DW
    Nanoscale; 2015 Jul; 7(27):11642-51. PubMed ID: 26098486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration.
    Kumar S; Raj S; Sarkar K; Chatterjee K
    Nanoscale; 2016 Mar; 8(12):6820-36. PubMed ID: 26955801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering.
    Prakash J; Prema D; Venkataprasanna KS; Balagangadharan K; Selvamurugan N; Venkatasubbu GD
    Int J Biol Macromol; 2020 Jul; 154():62-71. PubMed ID: 32173442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCL-HA microscaffolds for in vitro modular bone tissue engineering.
    Totaro A; Salerno A; Imparato G; Domingo C; Urciuolo F; Netti PA
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1865-1875. PubMed ID: 28586547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin/nano-hydroxyapatite hydrogel scaffold prepared by sol-gel technology as filler to repair bone defects.
    Raucci MG; Demitri C; Soriente A; Fasolino I; Sannino A; Ambrosio L
    J Biomed Mater Res A; 2018 Jul; 106(7):2007-2019. PubMed ID: 29575606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the strontium-added sol-gel hydroxyapatite gel materials.
    Raucci MG; Giugliano D; Alvarez-Perez MA; Ambrosio L
    J Mater Sci Mater Med; 2015 Feb; 26(2):90. PubMed ID: 25649515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering.
    Maleki-Ghaleh H; Siadati MH; Fallah A; Koc B; Kavanlouei M; Khademi-Azandehi P; Moradpur-Tari E; Omidi Y; Barar J; Beygi-Khosrowshahi Y; Kumar AP; Adibkia K
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation.
    Liu H; Cheng J; Chen F; Bai D; Shao C; Wang J; Xi P; Zeng Z
    Nanoscale; 2014 May; 6(10):5315-22. PubMed ID: 24699835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.
    Jakus AE; Shah RN
    J Biomed Mater Res A; 2017 Jan; 105(1):274-283. PubMed ID: 26860782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Ren N; Wang J; Liu H; Tao X
    Tissue Eng Part A; 2011 May; 17(9-10):1341-9. PubMed ID: 21247339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide.
    Liu H; Cheng J; Chen F; Hou F; Bai D; Xi P; Zeng Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3132-40. PubMed ID: 24527702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.
    Baba Ismail YM; Wimpenny I; Bretcanu O; Dalgarno K; El Haj AJ
    J Biomed Mater Res A; 2017 Jun; 105(6):1775-1785. PubMed ID: 28198131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering.
    Wang Q; Chu Y; He J; Shao W; Zhou Y; Qi K; Wang L; Cui S
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():232-242. PubMed ID: 28866161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.
    Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N
    J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.