BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26757140)

  • 1. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.
    Thwala M; Klaine SJ; Musee N
    Environ Toxicol Chem; 2016 Jul; 35(7):1677-94. PubMed ID: 26757140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.
    Krystek P; Brandsma S; Leonards P; de Boer J
    Talanta; 2016 Jan; 147():289-95. PubMed ID: 26592609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility.
    Ebrahimbabaie P; Meeinkuirt W; Pichtel J
    J Environ Sci (China); 2020 Jul; 93():151-163. PubMed ID: 32446451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Aspects of Nanoparticle Ecotoxicology.
    Sigg L; Behra R; Groh K; Isaacson C; Odzak N; Piccapietra F; Röhder L; Schug H; Yue Y; Schirmer K
    Chimia (Aarau); 2014 Nov; 68(11):806-11. PubMed ID: 26508489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review.
    Mahaye N; Thwala M; Cowan DA; Musee N
    Mutat Res Rev Mutat Res; 2017 Jul; 773():134-160. PubMed ID: 28927524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.
    McGillicuddy E; Murray I; Kavanagh S; Morrison L; Fogarty A; Cormican M; Dockery P; Prendergast M; Rowan N; Morris D
    Sci Total Environ; 2017 Jan; 575():231-246. PubMed ID: 27744152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms.
    Wang WX; Tan QG
    Environ Pollut; 2019 Sep; 252(Pt B):1561-1573. PubMed ID: 31277025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO2 nanoparticles in natural surface waters.
    Van Koetsem F; Verstraete S; Van der Meeren P; Du Laing G
    Environ Res; 2015 Oct; 142():207-14. PubMed ID: 26164115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.
    Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS
    Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review.
    Sukul U; Das K; Chen JS; Sharma RK; Dey G; Banerjee P; Taharia M; Lee CI; Maity JP; Lin PY; Chen CY
    Aquat Toxicol; 2023 Nov; 264():106713. PubMed ID: 37866164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic evaluation of nanotoxicity in aquatic organisms: A review.
    Tubatsi G; Kebaabetswe LP; Musee N
    Proteomics; 2022 Nov; 22(21):e2200008. PubMed ID: 36107811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.
    Matranga V; Corsi I
    Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton].
    Li ML; Jiang YL
    Huan Jing Ke Xue; 2015 Jan; 36(1):365-72. PubMed ID: 25898688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
    Van Koetsem F; Xiao Y; Luo Z; Du Laing G
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5277-87. PubMed ID: 26564182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in the removal of metal-based engineered nanoparticles from the aquatic environments by adsorption.
    Ma LY; Li QY; Yu X; Jiang M; Xu L
    Chemosphere; 2022 Mar; 291(Pt 3):133089. PubMed ID: 34856236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When Environmental Chemistry Meets Ecotoxicology: Bioavailability of Inorganic Nanoparticles to Phytoplankton.
    Slaveykova VI; Li M; Worms IA; Liu W
    Chimia (Aarau); 2020 Mar; 74(3):115-121. PubMed ID: 32197668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?
    Park S; Woodhall J; Ma G; Veinot JG; Cresser MS; Boxall AB
    Nanotoxicology; 2014 Aug; 8(5):583-92. PubMed ID: 23789836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.