BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26757237)

  • 1. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
    Blundell EL; Vogel R; Platt M
    Langmuir; 2016 Feb; 32(4):1082-90. PubMed ID: 26757237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Zeta Potential via Nanoparticle Translocation Velocities through a Tunable Nanopore: Using DNA-modified Particles as an Example.
    Blundell EL; Vogel R; Platt M
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle's surface charge.
    Blundell ELCJ; Healey MJ; Holton E; Sivakumaran M; Manstana S; Platt M
    Anal Bioanal Chem; 2016 Aug; 408(21):5757-5768. PubMed ID: 27287012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
    Eldridge JA; Willmott GR; Anderson W; Vogel R
    J Colloid Interface Sci; 2014 Sep; 429():45-52. PubMed ID: 24935188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.
    Kühnemund M; Nilsson M
    Biosens Bioelectron; 2015 May; 67():11-7. PubMed ID: 25000851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing.
    Vogel R; Pal AK; Jambhrunkar S; Patel P; Thakur SS; Reátegui E; Parekh HS; Saá P; Stassinopoulos A; Broom MF
    Sci Rep; 2017 Dec; 7(1):17479. PubMed ID: 29234015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
    Sikora A; Shard AG; Minelli C
    Langmuir; 2016 Mar; 32(9):2216-24. PubMed ID: 26869024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring aptamer-protein interactions using tunable resistive pulse sensing.
    Billinge ER; Broom M; Platt M
    Anal Chem; 2014 Jan; 86(2):1030-7. PubMed ID: 24380606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing.
    Booth MA; Vogel R; Curran JM; Harbison S; Travas-Sejdic J
    Biosens Bioelectron; 2013 Jul; 45():136-40. PubMed ID: 23455053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous size and ζ-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors.
    Kozak D; Anderson W; Vogel R; Chen S; Antaw F; Trau M
    ACS Nano; 2012 Aug; 6(8):6990-7. PubMed ID: 22809054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Time-Division Multiplexing Accessing Resistive Pulse Sensor for Particle Analysis.
    Choi G; Murphy E; Guan W
    ACS Sens; 2019 Jul; 4(7):1957-1963. PubMed ID: 31264411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Particle Focusing in Resistive-Pulse Technique: Direction-Dependent Velocity in Micropores.
    Qiu Y; Vlassiouk I; Hinkle P; Toimil-Molares ME; Levine AJ; Siwy ZS
    ACS Nano; 2016 Mar; 10(3):3509-17. PubMed ID: 26901283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tunable nanopore sensor for the detection of metal ions using translocation velocity and biphasic pulses.
    Mayne LJ; Christie SD; Platt M
    Nanoscale; 2016 Dec; 8(45):19139-19147. PubMed ID: 27827506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.
    Peng R; Li D
    Nanoscale; 2017 May; 9(18):5964-5974. PubMed ID: 28440838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse Size Distributions in Tunable Resistive Pulse Sensing.
    Weatherall E; Hauer P; Vogel R; Willmott GR
    Anal Chem; 2016 Sep; 88(17):8648-56. PubMed ID: 27469286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dsDNA fragment length on particle binding in an evanescent field biosensing system.
    Koets M; van Ommering K; Wang L; Testori E; Evers TH; Prins MW
    Analyst; 2014 Apr; 139(7):1672-7. PubMed ID: 24534803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.
    Anderson W; Lane R; Korbie D; Trau M
    Langmuir; 2015 Jun; 31(23):6577-87. PubMed ID: 25970769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the conformational switch of I-motif DNA using tunable resistive pulse sensing.
    Shi J; Zhou M
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2564-2569. PubMed ID: 30048743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size and charge characterisation of a submicrometre oil-in-water emulsion using resistive pulse sensing with tunable pores.
    Somerville JA; Willmott GR; Eldridge J; Griffiths M; McGrath KM
    J Colloid Interface Sci; 2013 Mar; 394():243-51. PubMed ID: 23347996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.