These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Capillary transport of two immiscible fluids in presence of electroviscous retardation. Bandopadhyay A; Mandal S; Chakraborty S Electrophoresis; 2017 Mar; 38(5):747-754. PubMed ID: 27981589 [TBL] [Abstract][Full Text] [Related]
3. Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus. Shenoy A; Chakraborty J; Chakraborty S Electrophoresis; 2013 Mar; 34(5):691-9. PubMed ID: 23192458 [TBL] [Abstract][Full Text] [Related]
4. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices. Chakraborty J; Ray S; Chakraborty S Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910 [TBL] [Abstract][Full Text] [Related]
5. On ion transport regulation with field-effect nonlinear electroosmosis control in microfluidics embedding an ion-selective medium. Liu W; Ren Y; Xue R; Song C; Wu Q Electrophoresis; 2020 Jun; 41(10-11):778-792. PubMed ID: 31943244 [TBL] [Abstract][Full Text] [Related]
6. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Das S; Chakraborty S Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752 [TBL] [Abstract][Full Text] [Related]
7. Electrokinetics of non-Newtonian fluids: a review. Zhao C; Yang C Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843 [TBL] [Abstract][Full Text] [Related]
8. Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements. Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023022. PubMed ID: 24032938 [TBL] [Abstract][Full Text] [Related]
9. Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon. Mondal PK; Ghosh U; Bandopadhyay A; DasGupta D; Chakraborty S Soft Matter; 2014 Nov; 10(42):8512-23. PubMed ID: 25242073 [TBL] [Abstract][Full Text] [Related]
10. Magnetic-field-driven alteration in capillary filling dynamics in a narrow fluidic channel. Gorthi SR; Mondal PK; Biswas G Phys Rev E; 2017 Jul; 96(1-1):013113. PubMed ID: 29347204 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Jing L; Dan G; Jianbin L; Guoxin X Electrophoresis; 2011 Feb; 32(3-4):414-22. PubMed ID: 21259283 [TBL] [Abstract][Full Text] [Related]
12. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient. Gaikwad H; Basu DN; Mondal PK Electrophoresis; 2016 Jul; 37(14):1998-2009. PubMed ID: 27079927 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Energy Generation and Flow Enhancement ( Sachar HS; Pial TH; Sivasankar VS; Das S ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243 [TBL] [Abstract][Full Text] [Related]
14. [Key factors in the control of electroosmosis with external radial electric field in CE]. Zhu Y; Chen Y Se Pu; 1999 Nov; 17(6):525-8. PubMed ID: 12552682 [TBL] [Abstract][Full Text] [Related]
15. Influence of electrolytes on contact angles of droplets under electric field. Lee CP; Fang BY; Wei ZH Analyst; 2013 Apr; 138(8):2372-7. PubMed ID: 23459640 [TBL] [Abstract][Full Text] [Related]
16. Electrorotation of leaky-dielectric and conducting microspheres in asymmetric electrolytes and angular velocity reversal. Miloh T; Nagler J Electrophoresis; 2020 Aug; 41(15):1296-1307. PubMed ID: 32357251 [TBL] [Abstract][Full Text] [Related]
17. Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model. Narla VK; Tripathi D Microvasc Res; 2019 May; 123():25-34. PubMed ID: 30543817 [TBL] [Abstract][Full Text] [Related]
18. Combined electroosmotically and pressure driven flow in soft nanofluidics. Matin MH; Ohshima H J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594 [TBL] [Abstract][Full Text] [Related]
19. Electrokinetically modulated peristaltic transport of power-law fluids. Goswami P; Chakraborty J; Bandopadhyay A; Chakraborty S Microvasc Res; 2016 Jan; 103():41-54. PubMed ID: 26524260 [TBL] [Abstract][Full Text] [Related]
20. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge. Alizadeh A; Wang M Electrophoresis; 2017 Mar; 38(5):580-595. PubMed ID: 27862052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]