BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 26758390)

  • 21. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.
    Bird DK; Yan L; Vrotsos KM; Eliceiri KW; Vaughan EM; Keely PJ; White JG; Ramanujam N
    Cancer Res; 2005 Oct; 65(19):8766-73. PubMed ID: 16204046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity.
    Stuntz E; Gong Y; Sood D; Liaudanskaya V; Pouli D; Quinn KP; Alonzo C; Liu Z; Kaplan DL; Georgakoudi I
    Sci Rep; 2017 Apr; 7(1):1041. PubMed ID: 28432298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
    Alam SR; Wallrabe H; Christopher KG; Siller KH; Periasamy A
    Sci Rep; 2022 Jul; 12(1):11938. PubMed ID: 35831321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing metabolic states of differentiating stem cells using two-photon FLIM.
    Meleshina AV; Dudenkova VV; Shirmanova MV; Shcheslavskiy VI; Becker W; Bystrova AS; Cherkasova EI; Zagaynova EV
    Sci Rep; 2016 Feb; 6():21853. PubMed ID: 26911347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications.
    Ranawat H; Pal S; Mazumder N
    Biomed Eng Lett; 2019 Aug; 9(3):293-310. PubMed ID: 31456890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models.
    Lakner PH; Monaghan MG; Möller Y; Olayioye MA; Schenke-Layland K
    Sci Rep; 2017 Feb; 7():42730. PubMed ID: 28211922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular pH affects the fluorescence lifetimes of metabolic co-factors.
    Schmitz R; Tweed K; Walsh C; Walsh AJ; Skala MC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34032035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM.
    Evers M; Salma N; Osseiran S; Casper M; Birngruber R; Evans CL; Manstein D
    Sci Rep; 2018 Jun; 8(1):8757. PubMed ID: 29884881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy.
    Wang M; Tang F; Pan X; Yao L; Wang X; Jing Y; Ma J; Wang G; Mi L
    BBA Clin; 2017 Dec; 8():7-13. PubMed ID: 28567338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast.
    Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I
    Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach.
    Ranjit S; Malacrida L; Stakic M; Gratton E
    J Biophotonics; 2019 Nov; 12(11):e201900156. PubMed ID: 31194290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging.
    Wetzker C; Reinhardt K
    Sci Rep; 2019 Dec; 9(1):19534. PubMed ID: 31862926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC12 cells.
    Lipman T; Tabakman R; Lazarovici P
    Eur J Pharmacol; 2006 Nov; 549(1-3):50-7. PubMed ID: 16989807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
    Hu L; Wang N; Cardona E; Walsh AJ
    Biomed Opt Express; 2020 Oct; 11(10):5674-5688. PubMed ID: 33149978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy.
    Schilling K; Brown E; Zhang X
    Bone; 2022 Jan; 154():116257. PubMed ID: 34781049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures.
    Pham DL; Miller CR; Myers MS; Myers DM; Hansen LA; Nichols MG
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34628733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.