These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26758594)
1. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Hussain D; Musharraf SG; Najam-ul-Haq M Anal Bioanal Chem; 2016 Feb; 408(6):1633-41. PubMed ID: 26758594 [TBL] [Abstract][Full Text] [Related]
2. Silica-lanthanum oxide: pioneer composite of rare-Earth metal oxide in selective phosphopeptides enrichment. Jabeen F; Hussain D; Fatima B; Musharraf SG; Huck CW; Bonn GK; Najam-ul-Haq M Anal Chem; 2012 Dec; 84(23):10180-5. PubMed ID: 23134445 [TBL] [Abstract][Full Text] [Related]
3. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Hussain D; Najam-ul-Haq M; Jabeen F; Ashiq MN; Athar M; Rainer M; Huck CW; Bonn GK Anal Chim Acta; 2013 May; 775():75-84. PubMed ID: 23601977 [TBL] [Abstract][Full Text] [Related]
4. Graphene oxide-metal oxide nanocomposites for on-target enrichment and analysis of phosphorylated biomolecules. Jabeen F; Sajid MS; Fatima B; Saeed A; Ashiq MN; Najam-Ul-Haq M J Sep Sci; 2021 Aug; 44(16):3137-3145. PubMed ID: 34165915 [TBL] [Abstract][Full Text] [Related]
5. Ceria-based nanocomposites for the enrichment and identification of phosphopeptides. Fatima B; Najam-ul-Haq M; Jabeen F; Majeed S; Ashiq MN; Musharraf SG; Shad MA; Xu G Analyst; 2013 Sep; 138(17):5059-67. PubMed ID: 23844417 [TBL] [Abstract][Full Text] [Related]
6. Alumina nanocomposites: a comparative approach highlighting the improved characteristics of nanocomposites for phosphopeptides enrichment. Najam-Ul-Haq M; Jabeen F; Fatima B; Ashiq MN; Hussain D Amino Acids; 2016 Nov; 48(11):2571-2579. PubMed ID: 27339789 [TBL] [Abstract][Full Text] [Related]
7. Lanthanum silicate coated magnetic microspheres as a promising affinity material for phosphopeptide enrichment and identification. Cheng G; Liu YL; Zhang JL; Sun DH; Ni JZ Anal Bioanal Chem; 2012 Aug; 404(3):763-70. PubMed ID: 22722743 [TBL] [Abstract][Full Text] [Related]
8. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo CY; Chen WY; Chen CT; Chen YC J Proteome Res; 2007 Feb; 6(2):887-93. PubMed ID: 17269746 [TBL] [Abstract][Full Text] [Related]
9. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Yan Y; Zheng Z; Deng C; Zhang X; Yang P Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265 [TBL] [Abstract][Full Text] [Related]
10. Specific enrichment and direct detection of phosphopeptides on insoluble transition metal oxide particles in matrix-assisted laser desorption/ionization mass spectrometry applications. Celikbiçak O; Kaynar G; Atakay M; Güler U; Kayili HM; Salih B Eur J Mass Spectrom (Chichester); 2013; 19(3):151-62. PubMed ID: 24308196 [TBL] [Abstract][Full Text] [Related]
11. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. Sun H; Zhang Q; Zhang L; Zhang W; Zhang L J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203 [TBL] [Abstract][Full Text] [Related]
12. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Lin HY; Chen WY; Chen YC Anal Bioanal Chem; 2009 Aug; 394(8):2129-36. PubMed ID: 19554316 [TBL] [Abstract][Full Text] [Related]
13. Newly fabricated magnetic lanthanide oxides core-shell nanoparticles in phosphoproteomics. Jabeen F; Najam-Ul-Haq M; Rainer M; Güzel Y; Huck CW; Bonn GK Anal Chem; 2015; 87(9):4726-32. PubMed ID: 25859614 [TBL] [Abstract][Full Text] [Related]
14. In-Tip Lanthanum Oxide Monolith for the Enrichment of Phosphorylated Biomolecules. Jabeen F; Najam-Ul-Haq M; Rainer M; Huck CW; Bonn GK Anal Chem; 2017 Oct; 89(19):10232-10238. PubMed ID: 28849910 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of magnetic binary metal oxides nanocomposites through dopamine chemistry for highly selective enrichment of phosphopeptides. Wang M; Sun X; Li Y; Deng C Proteomics; 2016 Mar; 16(6):915-9. PubMed ID: 26702589 [TBL] [Abstract][Full Text] [Related]
16. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595 [TBL] [Abstract][Full Text] [Related]
17. Facile Synthesis of Mesocrystalline SnO Ma W; Zhang F; Li L; Chen S; Qi L; Liu H; Bai Y ACS Appl Mater Interfaces; 2016 Dec; 8(51):35099-35105. PubMed ID: 27983778 [TBL] [Abstract][Full Text] [Related]
18. Organic molecule-assisted synthesis of Fe Li JY; Long XY; Sheng D; Lian HZ Talanta; 2020 Feb; 208():120437. PubMed ID: 31816680 [TBL] [Abstract][Full Text] [Related]
19. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Hussain D; Najam-Ul-Haq M; Majeed S; Musharraf SG; Lu Q; He X; Feng YQ Anal Bioanal Chem; 2019 Jun; 411(15):3373-3382. PubMed ID: 31016328 [TBL] [Abstract][Full Text] [Related]
20. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications. Çelikbıçak Ö; Atakay M; Güler Ü; Salih B Analyst; 2013 Aug; 138(15):4403-10. PubMed ID: 23730683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]