These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26758605)

  • 1. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot-sensitized solar cells.
    Pan Z; Rao H; Mora-Seró I; Bisquert J; Zhong X
    Chem Soc Rev; 2018 Oct; 47(20):7659-7702. PubMed ID: 30209490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control.
    Zhao K; Pan Z; Mora-Seró I; Cánovas E; Wang H; Song Y; Gong X; Wang J; Bonn M; Bisquert J; Zhong X
    J Am Chem Soc; 2015 Apr; 137(16):5602-9. PubMed ID: 25860792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.
    Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ
    J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
    Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J
    J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers.
    Wu Q; Hou J; Zhao H; Liu Z; Yue X; Peng S; Cao H
    Dalton Trans; 2018 Feb; 47(7):2214-2221. PubMed ID: 29362750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects.
    Zhang H; Fang W; Zhong Y; Zhao Q
    J Colloid Interface Sci; 2019 Jul; 547():267-274. PubMed ID: 30954770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells.
    Li W; Zhong X
    J Phys Chem Lett; 2015 Mar; 6(5):796-806. PubMed ID: 26262655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices.
    Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q
    Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells.
    Tachan Z; Hod I; Shalom M; Grinis L; Zaban A
    Phys Chem Chem Phys; 2013 Mar; 15(11):3841-5. PubMed ID: 23400262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-dot-sensitized solar cells.
    Rühle S; Shalom M; Zaban A
    Chemphyschem; 2010 Aug; 11(11):2290-304. PubMed ID: 20632355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.