These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26758847)

  • 1. The Matrix Proteins Hasp and Hig Exhibit Segregated Distribution within Synaptic Clefts and Play Distinct Roles in Synaptogenesis.
    Nakayama M; Suzuki E; Tsunoda S; Hama C
    J Neurosci; 2016 Jan; 36(2):590-606. PubMed ID: 26758847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig.
    Nakayama M; Nishimura O; Nishimura Y; Kitaichi M; Kuraku S; Sone M; Hama C
    J Neurosci; 2023 May; 43(22):3989-4004. PubMed ID: 37117011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The matrix protein Hikaru genki localizes to cholinergic synaptic clefts and regulates postsynaptic organization in the Drosophila brain.
    Nakayama M; Matsushita F; Hama C
    J Neurosci; 2014 Oct; 34(42):13872-7. PubMed ID: 25319684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels.
    Lansdell SJ; Collins T; Goodchild J; Millar NS
    BMC Neurosci; 2012 Jun; 13():73. PubMed ID: 22727315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras.
    Lansdell SJ; Millar NS
    J Neurochem; 2004 Jul; 90(2):479-89. PubMed ID: 15228604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hikaru genki protein is secreted into synaptic clefts from an early stage of synapse formation in Drosophila.
    Hoshino M; Suzuki E; Nabeshima Y; Hama C
    Development; 1996 Feb; 122(2):589-97. PubMed ID: 8625810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroligin 4 regulates synaptic growth via the bone morphogenetic protein (BMP) signaling pathway at the
    Zhang X; Rui M; Gan G; Huang C; Yi J; Lv H; Xie W
    J Biol Chem; 2017 Nov; 292(44):17991-18005. PubMed ID: 28912273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HSPG syndecan is a core organizer of cholinergic synapses.
    Zhou X; Vachon C; Cizeron M; Romatif O; Bülow HE; Jospin M; Bessereau JL
    J Cell Biol; 2021 Sep; 220(9):. PubMed ID: 34213535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation.
    Rohrbough J; Rushton E; Woodruff E; Fergestad T; Vigneswaran K; Broadie K
    Genes Dev; 2007 Oct; 21(20):2607-28. PubMed ID: 17901219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal regulation of nicotinic acetylcholine receptor subunits supports central cholinergic synapse development in
    Rosenthal JS; Yin J; Lei J; Sathyamurthy A; Short J; Long C; Spillman E; Sheng C; Yuan Q
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural expression of hikaru genki protein during embryonic and larval development of Drosophila melanogaster.
    Hoshino M; Suzuki E; Miyake T; Sone M; Komatsu A; Nabeshima Y; Hama C
    Dev Genes Evol; 1999 Jan; 209(1):1-9. PubMed ID: 9914413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein.
    Natarajan R; Barber K; Buckley A; Cho P; Egbejimi A; Wairkar YP
    PLoS One; 2015; 10(9):e0138188. PubMed ID: 26393506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster.
    Hamanaka Y; Meinertzhagen IA
    J Comp Neurol; 2010 Apr; 518(7):1133-55. PubMed ID: 20127822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-glycosylation requirements in neuromuscular synaptogenesis.
    Parkinson W; Dear ML; Rushton E; Broadie K
    Development; 2013 Dec; 140(24):4970-81. PubMed ID: 24227656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS.
    Daniels RW; Gelfand MV; Collins CA; DiAntonio A
    J Comp Neurol; 2008 May; 508(1):131-52. PubMed ID: 18302156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning.
    Volders K; Scholz S; Slabbaert JR; Nagel AC; Verstreken P; Creemers JW; Callaerts P; Schwärzel M
    J Neurosci; 2012 Oct; 32(43):15193-204. PubMed ID: 23100440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.
    MacNamee SE; Liu KE; Gerhard S; Tran CT; Fetter RD; Cardona A; Tolbert LP; Oland LA
    J Comp Neurol; 2016 Jul; 524(10):1979-98. PubMed ID: 27073064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction.
    Zhang Y; Guo H; Kwan H; Wang JW; Kosek J; Lu B
    Neuron; 2007 Jan; 53(2):201-15. PubMed ID: 17224403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap.
    Rohrbough J; Broadie K
    Development; 2010 Oct; 137(20):3523-33. PubMed ID: 20876658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination.
    Chen Y; Akin O; Nern A; Tsui CY; Pecot MY; Zipursky SL
    Neuron; 2014 Jan; 81(2):280-93. PubMed ID: 24462095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.