These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 26759170)

  • 41. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).
    Zhang D; Li J; Compton RO; Robertson J; Goff VH; Epps E; Kong W; Kim C; Paterson AH
    G3 (Bethesda); 2015 Mar; 5(6):1117-28. PubMed ID: 25834216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).
    Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S
    Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC Domain'.
    McCartney CA; Somers DJ; Humphreys DG; Lukow O; Ames N; Noll J; Cloutier S; McCallum BD
    Genome; 2005 Oct; 48(5):870-83. PubMed ID: 16391693
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-trait association mapping for phosphorous efficiency reveals flexible root architectures in sorghum.
    Hufnagel B; Bernardino KC; Malosetti M; Sousa SM; Silva LA; Guimaraes CT; Coelho AM; Santos TT; Viana JHM; Schaffert RE; Kochian LV; Eeuwijk FA; Magalhaes JV
    BMC Plant Biol; 2024 Jun; 24(1):562. PubMed ID: 38877425
    [TBL] [Abstract][Full Text] [Related]  

  • 46. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid.
    Lian X; Xing Y; Yan H; Xu C; Li X; Zhang Q
    Theor Appl Genet; 2005 Dec; 112(1):85-96. PubMed ID: 16189659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A.
    Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS
    Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A major pleiotropic QTL identified for yield components and nitrogen content in rice (Oryza sativa L.) under differential nitrogen field conditions.
    Vishnukiran T; Neeraja CN; Jaldhani V; Vijayalakshmi P; Raghuveer Rao P; Subrahmanyam D; Voleti SR
    PLoS One; 2020; 15(10):e0240854. PubMed ID: 33079957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic dissection of developmental responses of agro-morphological traits under different doses of nutrient fertilizers using high-density SNP markers.
    Mahender A; Ali J; Prahalada GD; Sevilla MAL; Balachiranjeevi CH; Md J; Maqsood U; Li Z
    PLoS One; 2019; 14(7):e0220066. PubMed ID: 31335882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes.
    Liu XH; He SL; Zheng ZP; Tan ZB; Li Z; He C
    Genet Mol Res; 2011 Dec; 10(4):3267-74. PubMed ID: 22194191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative trait loci mapping of stem sugar content and stem diameter in sorghum recombinant inbred lines using genotyping-by-sequencing.
    Takele A; Feyissa T; Disasa T
    Mol Biol Rep; 2022 Apr; 49(4):3045-3054. PubMed ID: 35076849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling.
    Yu K; Liu D; Chen Y; Wang D; Yang W; Yang W; Yin L; Zhang C; Zhao S; Sun J; Liu C; Zhang A
    J Exp Bot; 2019 Sep; 70(18):4671-4688. PubMed ID: 31226200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genotypic variation and identification of QTLs for agronomic traits, using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.).
    Al-Chaarani GR; Gentzbittel L; Huang XQ; Sarrafi A
    Theor Appl Genet; 2004 Nov; 109(7):1353-60. PubMed ID: 15365625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.
    Carvalho G; Schaffert RE; Malosetti M; Viana JH; Menezes CB; Silva LA; Guimaraes CT; Coelho AM; Kochian LV; van Eeuwijk FA; Magalhaes JV
    G3 (Bethesda); 2015 Dec; 6(2):475-84. PubMed ID: 26681519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stable sorghum grain quality QTL were identified using SC35 × RTx430 mapping population.
    Ayalew H; Peiris S; Chiluwal A; Kumar R; Tiwari M; Ostmeyer T; Bean S; Jagadish SVK
    Plant Genome; 2022 Sep; 15(3):e20227. PubMed ID: 35880472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench).
    Wu Y; Huang Y
    Theor Appl Genet; 2008 Jun; 117(1):117-24. PubMed ID: 18414829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench].
    Aruna C; Bhagwat VR; Madhusudhana R; Sharma V; Hussain T; Ghorade RB; Khandalkar HG; Audilakshmi S; Seetharama N
    Theor Appl Genet; 2011 May; 122(8):1617-30. PubMed ID: 21387095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop.
    Iqbal MM; Huynh M; Udall JA; Kilian A; Adhikari KN; Berger JD; Erskine W; Nelson MN
    BMC Genet; 2019 Aug; 20(1):68. PubMed ID: 31412771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.
    Zaidi PH; Rashid Z; Vinayan MT; Almeida GD; Phagna RK; Babu R
    PLoS One; 2015; 10(4):e0124350. PubMed ID: 25884393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QTLs identification for nitrogen and phosphorus uptake-related traits using ultra-high density SNP linkage.
    Fu Y; Zhong X; Pan J; Liang K; Liu Y; Peng B; Hu X; Huang N
    Plant Sci; 2019 Nov; 288():110209. PubMed ID: 31521212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.