These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26759476)

  • 1. THE PHE FORTUITOUS DOSIMETRY CAPABILITY BASED ON OPTICALLY STIMULATED LUMINESCENCE OF MOBILE PHONES.
    Eakins JS; Hager LG; Kouroukla E; Smith RW; Tanner RJ
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):412-5. PubMed ID: 26759476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INTEGRATED CIRCUITS FROM MOBILE PHONES AS POSSIBLE EMERGENCY OSL/TL DOSIMETERS.
    Sholom S; McKeever SW
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):398-401. PubMed ID: 26516131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RETROSPECTIVE DOSE RECONSTRUCTION WITH MOBILE PHONES AND CHIP CARDS.
    Ekendahl D; Čemusová Z; Judas L
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):206-210. PubMed ID: 31711204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose reconstruction using mobile phones.
    Beerten K; Reekmans F; Schroeyers W; Lievens L; Vanhavere F
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):580-3. PubMed ID: 21062806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescence-based retrospective dosimetry using Al2O3 from mobile phones: a simulation approach to determine the effects of position.
    Eakins JS; Kouroukla E
    J Radiol Prot; 2015 Jun; 35(2):343-81. PubMed ID: 25884152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a retrospective/fortuitous accident dosimetry service based on OSL of mobile phones.
    Smith RW; Eakins JS; Hager LG; Rothkamm K; Tanner RJ
    Radiat Prot Dosimetry; 2015 Apr; 164(1-2):89-92. PubMed ID: 25841040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculations of calibration and geometry correction factors of a radionuclide calibrator.
    Olsovcová V; Havelka M
    Appl Radiat Isot; 2006; 64(10-11):1370-4. PubMed ID: 16546399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DOSIMETRIC QUALITY ASSURANCE INTERPRETED FOR ISO 17025 IN PUBLIC HEALTH ENGLAND'S PERSONAL DOSIMETRY SERVICE.
    Gilvin PJ; Gibbens NJ; Baker ST
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):132-5. PubMed ID: 27150516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters.
    Yukihara EG; Yoshimura EM; Lindstrom TD; Ahmad S; Taylor KK; Mardirossian G
    Phys Med Biol; 2005 Dec; 50(23):5619-28. PubMed ID: 16306656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity measurement of a 176Lu sample using coincidence peaks and Monte Carlo simulations.
    Jutier C; Le Petit G
    Appl Radiat Isot; 2006; 64(10-11):1292-6. PubMed ID: 16603370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the IRSN graphite moderated Americium-Beryllium neutron field.
    Lacoste V; Gressier V; Muller H; Lebreton L;
    Radiat Prot Dosimetry; 2004; 110(1-4):135-9. PubMed ID: 15353636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective dosimetry with alumina substrate from electronic components.
    Ekendahl D; Judas L
    Radiat Prot Dosimetry; 2012 Jun; 150(2):134-41. PubMed ID: 21964904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHARACTERIZATION OF FLUORESCENT NUCLEAR TRACK DETECTORS AS CRITICALITY DOSIMETERS II.
    Harrison J; Moreno B; Van Hoey O; Mihailescu LC; Vanhavere F; Million M; Fomenko V; Akselrod M
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):201-205. PubMed ID: 29069460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters.
    Lye J; Dunn L; Kenny J; Lehmann J; Kron T; Oliver C; Butler D; Alves A; Johnston P; Franich R; Williams I
    Med Phys; 2014 Mar; 41(3):032102. PubMed ID: 24593737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards absolute activity measurements by ionisation chambers using the PENELOPE Monte-Carlo code.
    de Vismes A; Amiot MN
    Appl Radiat Isot; 2003 Oct; 59(4):267-72. PubMed ID: 14522235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optically stimulated luminescence dosimeter for measuring patient exposure from imaging guidance procedures.
    Ding GX; Malcolm AW
    Phys Med Biol; 2013 Sep; 58(17):5885-97. PubMed ID: 23920245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. INFLUENCE OF DIFFERENT TYPES OF PHANTOMS ON THE CALIBRATION OF DOSEMETERS FOR EYE LENS DOSIMETRY.
    Yoshitomi H; Kowatari M
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):199-203. PubMed ID: 27026745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation accident dosimetry on electronic components by OSL.
    Bassinet C; Trompier F; Clairand I
    Health Phys; 2010 Feb; 98(2):440-5. PubMed ID: 20065718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo study of the energy dependence of Al2O3:C crystals for real-time in vivo dosimetry in mammography.
    Aznar MC; Medin J; Hemdal B; Thilander Klang A; Bøtter-Jensen L; Mattsson S
    Radiat Prot Dosimetry; 2005; 114(1-3):444-9. PubMed ID: 15933153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational tool based on voxel geometry for dose reconstruction of a radiological accident due to external exposure.
    Lemosquet A; Clairand I; de Carlan L; Franck D; Aubineau-Lanièce I; Bottollier-Depois JF
    Radiat Prot Dosimetry; 2004; 110(1-4):449-54. PubMed ID: 15353689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.