BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26759483)

  • 1. Perceptual Learning Induces Persistent Attentional Capture by Nonsalient Shapes.
    Qu Z; Hillyard SA; Ding Y
    Cereb Cortex; 2017 Feb; 27(2):1512-1523. PubMed ID: 26759483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual learning induces active suppression of physically nonsalient shapes.
    Hu L; Ding Y; Qu Z
    Psychophysiology; 2019 Sep; 56(9):e13393. PubMed ID: 31087676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention.
    Feldmann-Wüstefeld T; Uengoer M; Schubö A
    Psychophysiology; 2015 Nov; 52(11):1483-97. PubMed ID: 26338030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-guided attentional capture cannot be prevented by spatial filtering.
    Berggren N; Eimer M
    Biol Psychol; 2018 Apr; 134():1-8. PubMed ID: 29458180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection history alters attentional filter settings persistently and beyond top-down control.
    Kadel H; Feldmann-Wüstefeld T; Schubö A
    Psychophysiology; 2017 May; 54(5):736-754. PubMed ID: 28169422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contingent capture can occur at specific feature values: behavioral and electrophysiological evidence.
    Jiao J; Zhao G; Wang Q; Zhang K; Li H; Sun HJ; Liu Q
    Biol Psychol; 2013 Feb; 92(2):125-34. PubMed ID: 23069637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difficulty of discrimination modulates attentional capture by regulating attentional focus.
    Sawaki R; Katayama J
    J Cogn Neurosci; 2009 Feb; 21(2):359-71. PubMed ID: 18510441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unitary focus of spatial attention during attentional capture: Evidence from event-related brain potentials.
    Grubert A; Righi LL; Eimer M
    J Vis; 2013 Jan; 13(3):9. PubMed ID: 23641076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG.
    Liesefeld HR; Liesefeld AM; Töllner T; Müller HJ
    Neuroimage; 2017 Aug; 156():166-173. PubMed ID: 28502842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological evidence of the capture of visual attention.
    Hickey C; McDonald JJ; Theeuwes J
    J Cogn Neurosci; 2006 Apr; 18(4):604-13. PubMed ID: 16768363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different neural mechanisms for nonsalient trained stimuli and physically salient stimuli in visual processing.
    Wang Z; Zhang Q; Hao Y; Xu S
    Psych J; 2024 Apr; 13(2):227-241. PubMed ID: 38151802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional capture by visual singletons is mediated by top-down task set: new evidence from the N2pc component.
    Kiss M; Jolicoeur P; Dell'acqua R; Eimer M
    Psychophysiology; 2008 Nov; 45(6):1013-24. PubMed ID: 18801016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.
    Wykowska A; Schubö A
    J Cogn Neurosci; 2011 Mar; 23(3):645-60. PubMed ID: 19929330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search.
    Barras C; Kerzel D
    Psychophysiology; 2017 Dec; 54(12):1826-1838. PubMed ID: 28752665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention and prediction modulations in expected and unexpected visuospatial trajectories.
    Baker KS; Pegna AJ; Yamamoto N; Johnston P
    PLoS One; 2021; 16(10):e0242753. PubMed ID: 34624029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans.
    Hopf JM; Boelmans K; Schoenfeld MA; Luck SJ; Heinze HJ
    J Neurosci; 2004 Feb; 24(8):1822-32. PubMed ID: 14985422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural substrates of visual perceptual learning of simple and complex stimuli.
    Song Y; Ding Y; Fan S; Qu Z; Xu L; Lu C; Peng D
    Clin Neurophysiol; 2005 Mar; 116(3):632-9. PubMed ID: 15721077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.