These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26759483)

  • 21. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of reward-driven attentional capture in visual search.
    Qi S; Zeng Q; Ding C; Li H
    Brain Res; 2013 Sep; 1532():32-43. PubMed ID: 23916733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How handedness influences perceptual and attentional processes during rapid serial visual presentation.
    Śmigasiewicz K; Liebrand M; Landmesser J; Verleger R
    Neuropsychologia; 2017 Jun; 100():155-163. PubMed ID: 28456522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scopolamine Reduces Electrophysiological Indices of Distractor Suppression: Evidence from a Contingent Capture Task.
    Laube I; Matthews N; Dean AJ; O'Connell RG; Mattingley JB; Bellgrove MA
    Front Neural Circuits; 2017; 11():99. PubMed ID: 29270112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for an attentional component of inhibition of return in visual search.
    Pierce AM; Crouse MD; Green JJ
    Psychophysiology; 2017 Nov; 54(11):1676-1685. PubMed ID: 28580702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of selective attention in visual awareness of stimulus features: electrophysiological studies.
    Koivisto M; Revonsuo A
    Cogn Affect Behav Neurosci; 2008 Jun; 8(2):195-210. PubMed ID: 18589509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-modal orienting of visual attention.
    Hillyard SA; Störmer VS; Feng W; Martinez A; McDonald JJ
    Neuropsychologia; 2016 Mar; 83():170-178. PubMed ID: 26072092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unvoluntary attentional capture in change blindness.
    Schankin A; Wascher E
    Psychophysiology; 2008 Sep; 45(5):742-50. PubMed ID: 18665863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aging and involuntary attention capture: electrophysiological evidence for preserved attentional control with advanced age.
    Lien MC; Gemperle A; Ruthruff E
    Psychol Aging; 2011 Mar; 26(1):188-202. PubMed ID: 20973601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the electrophysiological evidence for the capture of visual attention.
    McDonald JJ; Green JJ; Jannati A; Di Lollo V
    J Exp Psychol Hum Percept Perform; 2013 Jun; 39(3):849-60. PubMed ID: 23163789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compliance instead of flexibility? On age-related differences in cognitive control during visual search.
    Mertes C; Wascher E; Schneider D
    Neurobiol Aging; 2017 May; 53():169-180. PubMed ID: 28262324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociable neural mechanisms underlie value-driven and selection-driven attentional capture.
    Kim H; Anderson BA
    Brain Res; 2019 Apr; 1708():109-115. PubMed ID: 30468726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of salient stimuli inside the focus of attention.
    Kerzel D; Barras C; Grubert A
    Biol Psychol; 2018 Nov; 139():106-114. PubMed ID: 30392825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contingent attentional capture by top-down control settings: converging evidence from event-related potentials.
    Lien MC; Ruthruff E; Goodin Z; Remington RW
    J Exp Psychol Hum Percept Perform; 2008 Jun; 34(3):509-30. PubMed ID: 18505320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain mechanisms underlying behavioral specificity and generalization of short-term texture discrimination learning.
    Qu Z; Wang Y; Zhen Y; Hu L; Song Y; Ding Y
    Vision Res; 2014 Dec; 105():166-76. PubMed ID: 25449163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period.
    Brisson B; Leblanc E; Jolicoeur P
    Biol Psychol; 2009 Feb; 80(2):218-25. PubMed ID: 19000734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnocellular and parvocellular influences on reflexive attention.
    Ries AJ; Hopfinger JB
    Vision Res; 2011 Aug; 51(16):1820-8. PubMed ID: 21723311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Punishment-related memory-guided attention: Neural dynamics of perceptual modulation.
    Suárez-Suárez S; Rodríguez Holguín S; Cadaveira F; Nobre AC; Doallo S
    Cortex; 2019 Jun; 115():231-245. PubMed ID: 30852377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attentional capture during visual search is attenuated by target predictability: evidence from the N2pc, Pd, and topographic segmentation.
    Burra N; Kerzel D
    Psychophysiology; 2013 May; 50(5):422-30. PubMed ID: 23418888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.