These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2675965)
1. UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Boorstein RJ; Hilbert TP; Cadet J; Cunningham RP; Teebor GW Biochemistry; 1989 Jul; 28(15):6164-70. PubMed ID: 2675965 [TBL] [Abstract][Full Text] [Related]
2. Formation and stability of repairable pyrimidine photohydrates in DNA. Boorstein RJ; Hilbert TP; Cunningham RP; Teebor GW Biochemistry; 1990 Nov; 29(46):10455-60. PubMed ID: 2271656 [TBL] [Abstract][Full Text] [Related]
3. Ultraviolet-induced thymine hydrates in DNA are excised by bacterial and human DNA glycosylase activities. Ganguly T; Weems KM; Duker NJ Biochemistry; 1990 Aug; 29(31):7222-8. PubMed ID: 2207100 [TBL] [Abstract][Full Text] [Related]
4. Pyrimidine dimer-DNA glycosylases: studies on bacteriophage T4-infected and on uninfected Escherichia coli. Bonura T; Radany EH; McMillan S; Love JD; Schultz RA; Edenberg HJ; Friedberg EC Biochimie; 1982; 64(8-9):643-54. PubMed ID: 6753948 [TBL] [Abstract][Full Text] [Related]
5. Cytosine photoproduct-DNA glycosylase in Escherichia coli and cultured human cells. Weiss RB; Gallagher PE; Brent TP; Duker NJ Biochemistry; 1989 Feb; 28(4):1488-92. PubMed ID: 2655693 [TBL] [Abstract][Full Text] [Related]
6. The repair of pyrimidine dimers via a DNA-glycosylase mechanism. Grafstrom RH Basic Life Sci; 1986; 38():281-6. PubMed ID: 2427065 [TBL] [Abstract][Full Text] [Related]
7. A common mechanism of action for the N-glycosylase activity of DNA N-glycosylase/AP lyases from E. coli and T4. Purmal AA; Rabow LE; Lampman GW; Cunningham RP; Kow YW Mutat Res; 1996 Dec; 364(3):193-207. PubMed ID: 8960131 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH and temperature on the stability of UV-induced repairable pyrimidine hydrates in DNA. O'Donnell RE; Boorstein RJ; Cunningham RP; Teebor GW Biochemistry; 1994 Aug; 33(33):9875-80. PubMed ID: 8060994 [TBL] [Abstract][Full Text] [Related]
9. New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase. Hatahet Z; Kow YW; Purmal AA; Cunningham RP; Wallace SS J Biol Chem; 1994 Jul; 269(29):18814-20. PubMed ID: 8034633 [TBL] [Abstract][Full Text] [Related]
10. Excision of ultraviolet-induced photoproducts of 5-methylcytosine from DNA. Vairapandi M; Duker NJ Mutat Res; 1994 Sep; 315(2):85-94. PubMed ID: 7521001 [TBL] [Abstract][Full Text] [Related]
11. Purification of a mammalian homologue of Escherichia coli endonuclease III: identification of a bovine pyrimidine hydrate-thymine glycol DNAse/AP lyase by irreversible cross linking to a thymine glycol-containing oligoxynucleotide. Hilbert TP; Boorstein RJ; Kung HC; Bolton PH; Xing D; Cunningham RP; Teebor GW Biochemistry; 1996 Feb; 35(8):2505-11. PubMed ID: 8611553 [TBL] [Abstract][Full Text] [Related]
12. Replacing tryptophan-128 of T4 endonuclease V with a serine residue results in decreased enzymatic activity in vitro and in vivo. Valerie K Nucleic Acids Res; 1995 Sep; 23(18):3764-70. PubMed ID: 7479008 [TBL] [Abstract][Full Text] [Related]
13. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA. Nakabeppu Y; Sekiguchi M Proc Natl Acad Sci U S A; 1981 May; 78(5):2742-6. PubMed ID: 6265906 [TBL] [Abstract][Full Text] [Related]
14. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4. Liuzzi M; Weinfeld M; Paterson MC Biochemistry; 1987 Jun; 26(12):3315-21. PubMed ID: 2443160 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of action of a mammalian DNA repair endonuclease. Doetsch PW; Helland DE; Haseltine WA Biochemistry; 1986 Apr; 25(8):2212-20. PubMed ID: 2423122 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of endonuclease VIII from Escherichia coli. Melamede RJ; Hatahet Z; Kow YW; Ide H; Wallace SS Biochemistry; 1994 Feb; 33(5):1255-64. PubMed ID: 8110759 [TBL] [Abstract][Full Text] [Related]
18. Excision of 5,6-dihydroxy-5,6-dihydrothymine, 5,6-dihydrothymine, and 5-hydroxycytosine from defined sequence oligonucleotides by Escherichia coli endonuclease III and Fpg proteins: kinetic and mechanistic aspects. D'Ham C; Romieu A; Jaquinod M; Gasparutto D; Cadet J Biochemistry; 1999 Mar; 38(11):3335-44. PubMed ID: 10079077 [TBL] [Abstract][Full Text] [Related]
19. Excision of cytosine hydrates from Z-DNA. Duker NJ; Weems KM Nucleic Acids Res; 1990 Apr; 18(8):2007-10. PubMed ID: 2336388 [TBL] [Abstract][Full Text] [Related]
20. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Alseth I; Eide L; Pirovano M; Rognes T; Seeberg E; Bjørås M Mol Cell Biol; 1999 May; 19(5):3779-87. PubMed ID: 10207101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]