These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26760080)

  • 61. An EPR, thermostability and pH-dependence study of wild-type and mutant forms of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13.
    Caglio R; Pessione E; Valetti F; Giunta C; Ghibaudi E
    Biometals; 2013 Feb; 26(1):75-84. PubMed ID: 23224984
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation.
    Jiang Y; Wen J; Caiyin Q; Lin L; Hu Z
    Chemosphere; 2006 Nov; 65(7):1236-41. PubMed ID: 16730779
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degrading Rhodococcus sp. strain DK17.
    Kim D; Chae JC; Jang JY; Zylstra GJ; Kim YM; Kang BS; Kim E
    Biochem Biophys Res Commun; 2005 Jan; 326(4):880-6. PubMed ID: 15607751
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis.
    Adav SS; Chen MY; Lee DJ; Ren NQ
    Biotechnol Bioeng; 2007 Apr; 96(5):844-52. PubMed ID: 17001631
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [The preparation and properties of catechol-1,2-dioxygenase from Pseudomonas putida].
    Kou X; Li Q
    Wei Sheng Wu Xue Bao; 1990 Oct; 30(5):397-9. PubMed ID: 2251833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Occurrence of the SAL+ phenotype in soil pseudomonads].
    Kosheleva IA; Sazonova OI; Izmalkova TY; Boronin AM
    Mikrobiologiia; 2014; 83(6):703-11. PubMed ID: 25941720
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of a new catechol branch of the beta-ketoadipate pathway induced for benzoate degradation in Acinetobacter lwoffii K24.
    Yoon YH; Yun SH; Park SH; Seol SY; Leem SH; Kim SI
    Biochem Biophys Res Commun; 2007 Aug; 360(3):513-9. PubMed ID: 17610839
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular and catalytic properties of 2,4'-dihydroxyacetophenone dioxygenase from Burkholderia sp. AZ11.
    Enya M; Aoyagi K; Hishikawa Y; Yoshimura A; Mitsukura K; Maruyama K
    Biosci Biotechnol Biochem; 2012; 76(3):567-74. PubMed ID: 22451401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effective biochemical decomposition of chlorinated aromatic hydrocarbons with a biocatalyst immobilized on a natural enzyme support.
    Lee SH; Lee SH; Ryu SJ; Kang CS; Suma Y; Kim HS
    Bioresour Technol; 2013 Aug; 141():89-96. PubMed ID: 23433976
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cloning of catechol 2,3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil.
    Xie Y; Yu F; Wang Q; Gu X; Chen W
    Indian J Microbiol; 2014 Mar; 54(1):59-64. PubMed ID: 24426168
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rational design of disulfide bonds to increase thermostability of Rhodococcus opacus catechol 1,2 dioxygenase.
    Lister JGR; Loewen ME; Loewen MC; St-Jacques AD
    Biotechnol Bioeng; 2024 Nov; 121(11):3389-3401. PubMed ID: 39091151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01
    Filipowicz N; Momotko M; Boczkaj G; Cieśliński H
    Enzyme Microb Technol; 2020 Nov; 141():109663. PubMed ID: 33051016
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Catechol 2,3-dioxygenase from a new phenolic compound degrader Thauera sp. K11: purification and biochemical characterization.
    Xi L; Liu D; Wang L; Qiao N; Liu J
    J Basic Microbiol; 2018 Mar; 58(3):255-262. PubMed ID: 29380863
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from
    Tavakoli A; Hamzah A; Rabu A
    Mol Biol Res Commun; 2016 Sep; 5(3):133-142. PubMed ID: 28097167
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cloning, expression, characterization and mutational analysis of the tfdA gene from Cupriavidus campinensis BJ71.
    Han L; Liu Y; Li C; Zhao D
    World J Microbiol Biotechnol; 2015 Jul; 31(7):1021-30. PubMed ID: 25850533
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics.
    He Y; Wang Z; Li T; Peng X; Tang Y; Jia X
    Chemosphere; 2022 Dec; 308(Pt 3):136443. PubMed ID: 36116634
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Shape-function of a novel metapyrocatechase, RW4-MPC: Metagenomics to SAXS data based insight into deciphering regulators of function.
    Vasudeva G; Sidhu C; Kalidas N; Ashish ; Pinnaka AK
    Int J Biol Macromol; 2021 Oct; 188():1012-1024. PubMed ID: 34375665
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phenol hydroxylase from Rhodococcus sp. P 1.
    Straube G
    J Basic Microbiol; 1987; 27(4):229-32. PubMed ID: 3430338
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology.
    Zhou J; Yu X; Ding C; Wang Z; Zhou Q; Pao H; Cai W
    J Environ Sci (China); 2011; 23(1):22-30. PubMed ID: 21476336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.