These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 26760212)

  • 21. Calcium-mediated damage following hypoxia in cerebral cortex ex vivo studied by NMR spectroscopy. Evidence for direct involvement of voltage-gated Ca(2+)-channels.
    Brooks KJ; Kauppinen RA
    Neurochem Int; 1993 Nov; 23(5):441-50. PubMed ID: 7902749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation.
    Sullivan MN; Gonzales AL; Pires PW; Bruhl A; Leo MD; Li W; Oulidi A; Boop FA; Feng Y; Jaggar JH; Welsh DG; Earley S
    Sci Signal; 2015 Jan; 8(358):ra2. PubMed ID: 25564678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered human oligodendrocyte heterogeneity in multiple sclerosis.
    Jäkel S; Agirre E; Mendanha Falcão A; van Bruggen D; Lee KW; Knuesel I; Malhotra D; Ffrench-Constant C; Williams A; Castelo-Branco G
    Nature; 2019 Feb; 566(7745):543-547. PubMed ID: 30747918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic NMDA receptor-dependent Ca²⁺ entry drives membrane potential and Ca²⁺ oscillations in spinal ventral horn neurons.
    Alpert MH; Alford S
    PLoS One; 2013; 8(4):e63154. PubMed ID: 23646190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+).
    Kiedrowski L
    Mol Pharmacol; 1999 Sep; 56(3):619-32. PubMed ID: 10462550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient Receptor Potential Ankyrin-1 (TRPA1) Block Protects against Loss of White Matter Function during Ischaemia in the Mouse Optic Nerve.
    Lajoso W; Flower G; Giacco V; Kaul A; La Mache C; Brăban A; Roxas A; Hamilton NB
    Pharmaceuticals (Basel); 2021 Sep; 14(9):. PubMed ID: 34577609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamate release in severe brain ischaemia is mainly by reversed uptake.
    Rossi DJ; Oshima T; Attwell D
    Nature; 2000 Jan; 403(6767):316-21. PubMed ID: 10659851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths.
    Rinholm JE; Vervaeke K; Tadross MR; Tkachuk AN; Kopek BG; Brown TA; Bergersen LH; Clayton DA
    Glia; 2016 May; 64(5):810-25. PubMed ID: 26775288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation.
    Evonuk KS; Doyle RE; Moseley CE; Thornell IM; Adler K; Bingaman AM; Bevensee MO; Weaver CT; Min B; DeSilva TM
    Sci Adv; 2020 Jan; 6(2):eaax5936. PubMed ID: 31934627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dapoxetine induces neuroprotective effects against glutamate-induced neuronal cell death by inhibiting calcium signaling and mitochondrial depolarization in cultured rat hippocampal neurons.
    Jeong I; Yang JS; Hong YJ; Kim HJ; Hahn SJ; Yoon SH
    Eur J Pharmacol; 2017 Jun; 805():36-45. PubMed ID: 28322832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular physiology of the axo-myelinic synapse.
    Micu I; Plemel JR; Lachance C; Proft J; Jansen AJ; Cummins K; van Minnen J; Stys PK
    Exp Neurol; 2016 Feb; 276():41-50. PubMed ID: 26515690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS.
    Brasko C; Hawkins V; De La Rocha IC; Butt AM
    Brain Struct Funct; 2017 Jan; 222(1):41-59. PubMed ID: 26879293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR-32 human neuroblastoma cells.
    Louhivuori LM; Bart G; Larsson KP; Louhivuori V; Näsman J; Nordström T; Koivisto AP; Akerman KE
    J Cell Physiol; 2009 Oct; 221(1):67-74. PubMed ID: 19507192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke.
    Ramos-Cejudo J; Gutiérrez-Fernández M; Otero-Ortega L; Rodríguez-Frutos B; Fuentes B; Vallejo-Cremades MT; Hernanz TN; Cerdán S; Díez-Tejedor E
    Stroke; 2015 Jan; 46(1):221-8. PubMed ID: 25395417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone Morphogenetic Proteins: Inhibitors of Myelination in Development and Disease.
    Grinspan JB
    Vitam Horm; 2015; 99():195-222. PubMed ID: 26279377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of calcium-permeable non-N-methyl-D-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro.
    Taschenberger H; Grantyn R
    Neuroscience; 1998 Jun; 84(3):877-96. PubMed ID: 9579791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myelin basic protein induces cell death of mature pig oligodendrocytes in vitro and produces demyelination in vivo.
    Althaus HH; Klöppner S; Rohde G; Parvizi N; Schwartz P; Brück W; Holtz W
    Neurosci Lett; 2000 Mar; 283(1):77-80. PubMed ID: 10729638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myelin repair stimulated by CNS-selective thyroid hormone action.
    Hartley MD; Banerji T; Tagge IJ; Kirkemo LL; Chaudhary P; Calkins E; Galipeau D; Shokat MD; DeBell MJ; Van Leuven S; Miller H; Marracci G; Pocius E; Banerji T; Ferrara SJ; Meinig JM; Emery B; Bourdette D; Scanlan TS
    JCI Insight; 2019 Apr; 4(8):. PubMed ID: 30996143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remyelinating strategies in multiple sclerosis.
    Luessi F; Kuhlmann T; Zipp F
    Expert Rev Neurother; 2014 Nov; 14(11):1315-34. PubMed ID: 25331418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia.
    Melani A; Cipriani S; Vannucchi MG; Nosi D; Donati C; Bruni P; Giovannini MG; Pedata F
    Brain; 2009 Jun; 132(Pt 6):1480-95. PubMed ID: 19359287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.