BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26760444)

  • 1. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.
    Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2016 Feb; 12(2):585-94. PubMed ID: 26760444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Beckett D; Raghavachari K
    J Chem Theory Comput; 2015 Sep; 11(9):4238-47. PubMed ID: 26575919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.
    Jose KV; Raghavachari K
    Chirality; 2016 Dec; 28(12):755-768. PubMed ID: 27897329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Energy Gradients and Infrared Vibrational Spectra through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2015 Mar; 11(3):950-61. PubMed ID: 26579749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Cartesian Tensor Transfer Method for Calculating Vibrational Spectra of Polypeptides.
    Bieler NS; Haag MP; Jacob CR; Reiher M
    J Chem Theory Comput; 2011 Jun; 7(6):1867-81. PubMed ID: 26596448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy.
    Yamamoto S; Li X; Ruud K; Bouř P
    J Chem Theory Comput; 2012 Mar; 8(3):977-85. PubMed ID: 26593359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities.
    Cheeseman JR; Frisch MJ
    J Chem Theory Comput; 2011 Oct; 7(10):3323-34. PubMed ID: 26598166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and vibrational motion of insulin from Raman optical activity spectra.
    Yamamoto S; Kaminský J; Bouř P
    Anal Chem; 2012 Mar; 84(5):2440-51. PubMed ID: 22263577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the surrounding effects on Raman optical activity signatures of a chiral cage system: Cryptophane-PP-111.
    D'haese LCG; Daugey N; Pitrat D; Brotin T; Kapitán J; Liégeois V
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123484. PubMed ID: 37898056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations.
    Urago H; Suga T; Hirata T; Kodama H; Unno M
    J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman optical activity of enantiopure cryptophanes.
    Daugey N; Brotin T; Vanthuyne N; Cavagnat D; Buffeteau T
    J Phys Chem B; 2014 May; 118(19):5211-7. PubMed ID: 24766448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman and ROA analyses of twisted anthracenes: connecting vibrational and electronic/photonic structures.
    Palomo L; Gordillo Gámez F; Bedi A; Gidron O; Casado J; Ramírez FJ
    Phys Chem Chem Phys; 2021 Jun; 23(25):13996-14003. PubMed ID: 34151326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ramachandran mapping of peptide conformation using a large database of computed Raman and Raman optical activity spectra.
    Mensch C; Barron LD; Johannessen C
    Phys Chem Chem Phys; 2016 Nov; 18(46):31757-31768. PubMed ID: 27841400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics.
    Luber S
    J Chem Theory Comput; 2017 Mar; 13(3):1254-1262. PubMed ID: 28218847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman optical activity of proteins, carbohydrates and glycoproteins.
    Zhu F; Isaacs NW; Hecht L; Tranter GE; Barron LD
    Chirality; 2006 Feb; 18(2):103-15. PubMed ID: 16385622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity-carrying modes in Raman and Raman optical activity spectroscopy.
    Luber S; Reiher M
    Chemphyschem; 2009 Aug; 10(12):2049-57. PubMed ID: 19582732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of Raman optical activity spectra for vibrational analysis.
    Mutter ST; Zielinski F; Popelier PL; Blanch EW
    Analyst; 2015 May; 140(9):2944-56. PubMed ID: 25646177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.