These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26760486)

  • 1. Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method.
    Gurbuz F; Ceylan Ş; Odabaşı M; Codd GA
    Water Res; 2016 Mar; 90():337-343. PubMed ID: 26760486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu
    Alkan H; Cömert ŞC; Gürbüz F; Doğru M; Odabaşı M
    Artif Cells Nanomed Biotechnol; 2017 Feb; 45(1):90-97. PubMed ID: 26755205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcystin removal by a naturally-occurring substance: pumice.
    Gurbuz F; Codd GA
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):323-7. PubMed ID: 18496628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies.
    Ho L; Lambling P; Bustamante H; Duker P; Newcombe G
    Water Res; 2011 Apr; 45(9):2954-64. PubMed ID: 21459402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of potent cyanotoxins from water using magnetophoretic nanoparticle of polypyrrole: adsorption kinetic and isotherm study.
    Hena S; Rozi R; Tabassum S; Huda A
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14868-80. PubMed ID: 27072032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of dissolved gas flotation and nanofiltration for M. aeruginosa and associated microcystins removal.
    Teixeira MR; Rosa MJ
    Water Res; 2006 Nov; 40(19):3612-20. PubMed ID: 16860837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new morphospecies of Microcystis sp. forming bloom in the Cheffia dam (Algeria): seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plant.
    Nasri H; Bouaïcha N; Harche MK
    Environ Toxicol; 2007 Aug; 22(4):347-56. PubMed ID: 17607726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel adsorbent for DNA adsorption: Fe(3+)-attached sporopollenin particles embedded composite cryogels.
    Ceylan Ş; Odabaşı M
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):376-83. PubMed ID: 23305206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification.
    Wei G; Miao YE; Zhang C; Yang Z; Liu Z; Tjiu WW; Liu T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7584-91. PubMed ID: 23855959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-cryogel hierarchical composites as effective and scalable filters for removal of trace organic pollutants from water.
    Busquets R; Ivanov AE; Mbundi L; Hörberg S; Kozynchenko OP; Cragg PJ; Savina IN; Whitby RLD; Mikhalovsky SV; Tennison SR; Jungvid H; Cundy AB
    J Environ Manage; 2016 Nov; 182():141-148. PubMed ID: 27472050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal.
    Otero-González L; Mikhalovsky SV; Václavíková M; Trenikhin MV; Cundy AB; Savina IN
    J Hazard Mater; 2020 Jan; 381():120996. PubMed ID: 31445473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of a potent cyanobacterial hepatotoxin by peat.
    Sathishkumar M; Pavagadhi S; Mahadevan A; Balasubramanian R; Burger DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1877-84. PubMed ID: 20954043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcystins in potable surface waters: toxic effects and removal strategies.
    Roegner AF; Brena B; González-Sapienza G; Puschner B
    J Appl Toxicol; 2014 May; 34(5):441-57. PubMed ID: 24038121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of lysozyme adsorption performance of Cu(2+)-attached PHEMA beads embedded cryogel membranes.
    Cömert SC; Odabaşı M
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():1-8. PubMed ID: 24268226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of intra- and extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption.
    Şengül AB; Ersan G; Tüfekçi N
    J Hazard Mater; 2018 Feb; 343():29-35. PubMed ID: 28938156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chloramination.
    Ho L; Kayal N; Trolio R; Newcombe G
    Water Sci Technol; 2010; 62(2):442-50. PubMed ID: 20651451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of microcystins in raw water sources and treated drinking water of Finnish waterworks.
    Lahti K; Rapala J; Kivimäki AL; Kukkonen J; Niemelä M; Sivonen K
    Water Sci Technol; 2001; 43(12):225-8. PubMed ID: 11464762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples.
    Doula MK; Dimirkou A
    J Hazard Mater; 2008 Mar; 151(2-3):738-45. PubMed ID: 17658683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.
    Ünlü N; Ceylan Ş; Erzengin M; Odabaşı M
    J Sep Sci; 2011 Aug; 34(16-17):2173-80. PubMed ID: 21739602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.