These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26760911)

  • 1. Cellular and subcellular oxidative stress parameters following severe spinal cord injury.
    Visavadiya NP; Patel SP; VanRooyen JL; Sullivan PG; Rabchevsky AG
    Redox Biol; 2016 Aug; 8():59-67. PubMed ID: 26760911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal characterization of mitochondrial bioenergetics after spinal cord injury.
    Sullivan PG; Krishnamurthy S; Patel SP; Pandya JD; Rabchevsky AG
    J Neurotrauma; 2007 Jun; 24(6):991-9. PubMed ID: 17600515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of peroxynitrite in secondary oxidative damage after spinal cord injury.
    Xiong Y; Rabchevsky AG; Hall ED
    J Neurochem; 2007 Feb; 100(3):639-49. PubMed ID: 17181549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury.
    Carrico KM; Vaishnav R; Hall ED
    J Neurotrauma; 2009 Aug; 26(8):1369-78. PubMed ID: 19419247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carnosol protects against spinal cord injury through Nrf-2 upregulation.
    Wang ZH; Xie YX; Zhang JW; Qiu XH; Cheng AB; Tian L; Ma BY; Hou YB
    J Recept Signal Transduct Res; 2016; 36(1):72-8. PubMed ID: 26791582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury.
    Azbill RD; Mu X; Bruce-Keller AJ; Mattson MP; Springer JE
    Brain Res; 1997 Aug; 765(2):283-90. PubMed ID: 9313901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury.
    Hill RL; Singh IN; Wang JA; Hall ED
    Neurochem Int; 2017 Dec; 111():45-56. PubMed ID: 28342966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Age and Neurotrauma Diminish Glutathione and Impair Antioxidant Defense after Spinal Cord Injury.
    Stewart AN; Glaser EP; Mott CA; Bailey WM; Sullivan PG; Patel SP; Gensel JC
    J Neurotrauma; 2022 Aug; 39(15-16):1075-1089. PubMed ID: 35373589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ketone Metabolite β-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases.
    Kong G; Huang Z; Ji W; Wang X; Liu J; Wu X; Huang Z; Li R; Zhu Q
    J Neurotrauma; 2017 Sep; 34(18):2645-2655. PubMed ID: 28683591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mn (III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone.
    Liu D; Shan Y; Valluru L; Bao F
    BMC Neurosci; 2013 Mar; 14():23. PubMed ID: 23452429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury.
    Xiong Y; Hall ED
    Exp Neurol; 2009 Mar; 216(1):105-14. PubMed ID: 19111721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.
    Özdemir ÜS; Nazıroğlu M; Şenol N; Ghazizadeh V
    Mol Neurobiol; 2016 Aug; 53(6):3540-3551. PubMed ID: 26099309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction.
    Andrabi SS; Yang J; Gao Y; Kuang Y; Labhasetwar V
    J Control Release; 2020 Jan; 317():300-311. PubMed ID: 31805339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical model of severe penetrating traumatic brain injury.
    Pandya JD; Musyaju S; Modi HR; Cao Y; Flerlage WJ; Huynh L; Kociuba B; Visavadiya NP; Kobeissy F; Wang K; Gilsdorf JS; Scultetus AH; Shear DA
    Free Radic Biol Med; 2023 Mar; 198():44-58. PubMed ID: 36758906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered oxidative stress and antioxidant defence in skeletal muscle during the first year following spinal cord injury.
    Savikj M; Kostovski E; Lundell LS; Iversen PO; Massart J; Widegren U
    Physiol Rep; 2019 Aug; 7(16):e14218. PubMed ID: 31456346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury.
    Xu W; Chi L; Xu R; Ke Y; Luo C; Cai J; Qiu M; Gozal D; Liu R
    Spinal Cord; 2005 Apr; 43(4):204-13. PubMed ID: 15520836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin.
    Liu D; Bao F
    Neuroscience; 2015 Jan; 285():81-96. PubMed ID: 25451281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutathione augmentation on lipid peroxidation after spinal cord injury.
    Lucas JH; Wheeler DG; Guan Z; Suntres Z; Stokes BT
    J Neurotrauma; 2002 Jun; 19(6):763-75. PubMed ID: 12165136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury.
    Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J
    J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.