BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26761437)

  • 1. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon.
    Kane AL; Al-Shayeb B; Holec PV; Rajan S; Le Mieux NE; Heinsch SC; Psarska S; Aukema KG; Sarkar CA; Nater EA; Gralnick JA
    PLoS One; 2016; 11(1):e0147036. PubMed ID: 26761437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry. Toward methylmercury bioremediation.
    Omichinski JG
    Science; 2007 Jul; 317(5835):205-6. PubMed ID: 17626871
    [No Abstract]   [Full Text] [Related]  

  • 4. Modeling Mercury in Proteins.
    Parks JM; Smith JC
    Methods Enzymol; 2016; 578():103-22. PubMed ID: 27497164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation.
    Priyadarshanee M; Chatterjee S; Rath S; Dash HR; Das S
    J Hazard Mater; 2022 Feb; 423(Pt A):126985. PubMed ID: 34464861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments.
    Nascimento AM; Chartone-Souza E
    Genet Mol Res; 2003 Mar; 2(1):92-101. PubMed ID: 12917805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of mercury-resistant genes in bioremediation of mercurials in environments].
    Pan-Hou H
    Yakugaku Zasshi; 2010 Sep; 130(9):1143-56. PubMed ID: 20823672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination.
    Sone Y; Uraguchi S; Takanezawa Y; Nakamura R; Pan-Hou H; Kiyono M
    Biol Pharm Bull; 2017; 40(7):1125-1128. PubMed ID: 28674257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between the persistence of mer operon sequences in Escherichia coli and their resistance to mercury.
    Murtaza I; Dutt A; Ali A
    Curr Microbiol; 2002 Mar; 44(3):178-83. PubMed ID: 11821925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.
    Petrus AK; Rutner C; Liu S; Wang Y; Wiatrowski HA
    Appl Environ Microbiol; 2015 Nov; 81(22):7833-8. PubMed ID: 26341208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants.
    Bizily SP; Kim T; Kandasamy MK; Meagher RB
    Plant Physiol; 2003 Feb; 131(2):463-71. PubMed ID: 12586871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon.
    Wei W; Liu X; Sun P; Wang X; Zhu H; Hong M; Mao ZW; Zhao J
    Environ Sci Technol; 2014 Mar; 48(6):3363-71. PubMed ID: 24564581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of organic mercury in high salt environments by a marine aerobic bacterium Alteromonas macleodii KD01.
    Zhang D; Chu B; Yang Q; Zhang X; Fang Y; Liu G; Liang L; Guo Y; Yin Y; Cai Y; Jiang G
    Bioresour Technol; 2024 Jun; 402():130831. PubMed ID: 38734262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury.
    Zhang NX; Guo Y; Li H; Yang XQ; Gao CX; Hui CY
    PLoS One; 2021; 16(5):e0252190. PubMed ID: 34038487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli.
    Kiyono M; Sone Y; Nakamura R; Pan-Hou H; Sakabe K
    FEBS Lett; 2009 Apr; 583(7):1127-31. PubMed ID: 19265693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment.
    Barkay T; Wagner-Döbler I
    Adv Appl Microbiol; 2005; 57():1-52. PubMed ID: 16002008
    [No Abstract]   [Full Text] [Related]  

  • 17. Overexpression of a single membrane component from the Bacillus mer operon enhanced mercury resistance in an Escherichia coli host.
    Hsieh JL; Chen CY; Chang JS; Endo G; Huang CC
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1494-9. PubMed ID: 17587680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review.
    Hsu-Kim H; Kucharzyk KH; Zhang T; Deshusses MA
    Environ Sci Technol; 2013 Mar; 47(6):2441-56. PubMed ID: 23384298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons.
    Hui CY; Ma BC; Hu SY; Wu C
    Environ Pollut; 2024 Jan; 341():123016. PubMed ID: 38008253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of mercury: not properly exploited in contaminated soils!
    Mahbub KR; Bahar MM; Labbate M; Krishnan K; Andrews S; Naidu R; Megharaj M
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):963-976. PubMed ID: 28074219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.