These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26761437)

  • 21. Phytodetoxification of hazardous organomercurials by genetically engineered plants.
    Bizily SP; Rugh CL; Meagher RB
    Nat Biotechnol; 2000 Feb; 18(2):213-7. PubMed ID: 10657131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of methylmercury by bacteria isolated from environmental samples.
    Spangler WJ; Spigarelli JL; Rose JM; Flippin RS; Miller HH
    Appl Microbiol; 1973 Apr; 25(4):488-93. PubMed ID: 4572979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon.
    Osborn AM; Bruce KD; Strike P; Ritchie DA
    FEMS Microbiol Rev; 1997 Apr; 19(4):239-62. PubMed ID: 9167257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of internal standard method in recombinant luminescent bacteria test.
    Wang YZ; Li D; He M
    J Environ Sci (China); 2015 Sep; 35():128-134. PubMed ID: 26354701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability of inorganic mercury and methylmercury on yeast-silica gel microcolumns: field sampling capabilities.
    Pérez-Corona MT; Madrid-Albarrán Y; Cámara C
    Fresenius J Anal Chem; 2000 Nov; 368(5):471-4. PubMed ID: 11227527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation.
    Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG
    J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury and methylmercury detoxification potential by sponge-associated bacteria.
    Santos-Gandelman JF; Giambiagi-deMarval M; Muricy G; Barkay T; Laport MS
    Antonie Van Leeuwenhoek; 2014 Sep; 106(3):585-90. PubMed ID: 24996548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organomercurials. Their formation and pathways in the environment.
    Hintelmann H
    Met Ions Life Sci; 2010; 7():365-401. PubMed ID: 20877813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health.
    Zeyaullah M; Nabi G; Malla R; Ali A
    Nepal Med Coll J; 2007 Sep; 9(3):182-5. PubMed ID: 18092437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli.
    Cursino L; Mattos SV; Azevedo V; Galarza F; Bücker DH; Chartone-Souza E; Nascimento A
    Sci Total Environ; 2000 Oct; 261(1-3):109-13. PubMed ID: 11036982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylmercury degradation by Pseudomonas putida V1.
    Cabral L; Yu RQ; Crane S; Giovanella P; Barkay T; Camargo FA
    Ecotoxicol Environ Saf; 2016 Aug; 130():37-42. PubMed ID: 27062344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments.
    Grégoire DS; Lavoie NC; Poulain AJ
    Environ Sci Technol; 2018 Apr; 52(7):4145-4153. PubMed ID: 29514452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyphosphate produced in recombinant Escherichia coli confers mercury resistance.
    Pan-Hou H; Kiyono M; Omura H; Omura T; Endo G
    FEMS Microbiol Lett; 2002 Feb; 207(2):159-64. PubMed ID: 11958934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Luminescent bacteria-based sensing method for methylmercury specific determination.
    Rantala A; Utriainen M; Kaushik N; Virta M; Välimaa AL; Karp M
    Anal Bioanal Chem; 2011 May; 400(4):1041-9. PubMed ID: 21461988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium.
    Wang X; He Z; Luo H; Zhang M; Zhang D; Pan X; Gadd GM
    Sci Total Environ; 2018 Feb; 615():615-623. PubMed ID: 28988098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments.
    Brim H; McFarlan SC; Fredrickson JK; Minton KW; Zhai M; Wackett LP; Daly MJ
    Nat Biotechnol; 2000 Jan; 18(1):85-90. PubMed ID: 10625398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1.
    Santos-Gandelman JF; Cruz K; Crane S; Muricy G; Giambiagi-deMarval M; Barkay T; Laport MS
    Curr Microbiol; 2014 Sep; 69(3):374-80. PubMed ID: 24807626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding.
    Matsui K; Endo G
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3037-3048. PubMed ID: 29479648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species.
    Lohren H; Bornhorst J; Fitkau R; Pohl G; Galla HJ; Schwerdtle T
    BMC Pharmacol Toxicol; 2016 Dec; 17(1):63. PubMed ID: 27978854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.