These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 26761525)
1. Effects of protein flexibility and active site water molecules on the prediction of sites of metabolism for cytochrome P450 2C19 substrates. Li J; Cai J; Su H; Du H; Zhang J; Ding S; Liu G; Tang Y; Li W Mol Biosyst; 2016 Mar; 12(3):868-78. PubMed ID: 26761525 [TBL] [Abstract][Full Text] [Related]
2. Interactions of omeprazole-based analogues with cytochrome P450 2C19: a computational study. Li J; Du H; Wu Z; Su H; Liu G; Tang Y; Li W Mol Biosyst; 2016 May; 12(6):1913-21. PubMed ID: 27098535 [TBL] [Abstract][Full Text] [Related]
3. Effects of protein flexibility on the site of metabolism prediction for CYP2A6 substrates. Sheng Y; Chen Y; Wang L; Liu G; Li W; Tang Y J Mol Graph Model; 2014 Nov; 54():90-9. PubMed ID: 25459760 [TBL] [Abstract][Full Text] [Related]
4. 2D SMARTCyp reactivity-based site of metabolism prediction for major drug-metabolizing cytochrome P450 enzymes. Liu R; Liu J; Tawa G; Wallqvist A J Chem Inf Model; 2012 Jun; 52(6):1698-712. PubMed ID: 22631565 [TBL] [Abstract][Full Text] [Related]
5. Assessment of CYP2C9 Structural Models for Site of Metabolism Prediction. Zhang X; Xu M; Wu Z; Liu G; Tang Y; Li W ChemMedChem; 2021 Jun; 16(11):1754-1763. PubMed ID: 33600055 [TBL] [Abstract][Full Text] [Related]
6. Structure-based site of metabolism prediction for cytochrome P450 2D6. Moors SL; Vos AM; Cummings MD; Van Vlijmen H; Ceulemans A J Med Chem; 2011 Sep; 54(17):6098-105. PubMed ID: 21797232 [TBL] [Abstract][Full Text] [Related]
7. Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. de Graaf C; Oostenbrink C; Keizers PH; van der Wijst T; Jongejan A; Vermeulen NP J Med Chem; 2006 Apr; 49(8):2417-30. PubMed ID: 16610785 [TBL] [Abstract][Full Text] [Related]
8. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations. Capoferri L; Leth R; ter Haar E; Mohanty AK; Grootenhuis PD; Vottero E; Commandeur JN; Vermeulen NP; Jørgensen FS; Olsen L; Geerke DP Proteins; 2016 Mar; 84(3):383-96. PubMed ID: 26757175 [TBL] [Abstract][Full Text] [Related]
9. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4. Yuki H; Honma T; Hata M; Hoshino T Bioorg Med Chem; 2012 Jan; 20(2):775-83. PubMed ID: 22197672 [TBL] [Abstract][Full Text] [Related]
10. Differing Membrane Interactions of Two Highly Similar Drug-Metabolizing Cytochrome P450 Isoforms: CYP 2C9 and CYP 2C19. Mustafa G; Nandekar PP; Bruce NJ; Wade RC Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31487853 [TBL] [Abstract][Full Text] [Related]
11. Role of water in molecular docking simulations of cytochrome P450 2D6. Santos R; Hritz J; Oostenbrink C J Chem Inf Model; 2010 Jan; 50(1):146-54. PubMed ID: 19899781 [TBL] [Abstract][Full Text] [Related]
12. Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. Hritz J; de Ruiter A; Oostenbrink C J Med Chem; 2008 Dec; 51(23):7469-77. PubMed ID: 18998665 [TBL] [Abstract][Full Text] [Related]
13. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking. de Graaf C; Pospisil P; Pos W; Folkers G; Vermeulen NP J Med Chem; 2005 Apr; 48(7):2308-18. PubMed ID: 15801824 [TBL] [Abstract][Full Text] [Related]
14. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity. Zharkova MS; Sobolev BN; Yu Oparina N; Veselovsky AV; Archakov AI J Mol Recognit; 2013 Feb; 26(2):86-91. PubMed ID: 23334916 [TBL] [Abstract][Full Text] [Related]
15. Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Kingsley LJ; Wilson GL; Essex ME; Lill MA Pharm Res; 2015 Mar; 32(3):986-1001. PubMed ID: 25208877 [TBL] [Abstract][Full Text] [Related]
16. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. Huang TW; Zaretzki J; Bergeron C; Bennett KP; Breneman CM J Chem Inf Model; 2013 Dec; 53(12):3352-66. PubMed ID: 24261543 [TBL] [Abstract][Full Text] [Related]
17. Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. Danielson ML; Desai PV; Mohutsky MA; Wrighton SA; Lill MA Eur J Med Chem; 2011 Sep; 46(9):3953-63. PubMed ID: 21703735 [TBL] [Abstract][Full Text] [Related]
18. Elucidating substrate promiscuity in the human cytochrome 3A4. Hayes C; Ansbro D; Kontoyianni M J Chem Inf Model; 2014 Mar; 54(3):857-69. PubMed ID: 24571781 [TBL] [Abstract][Full Text] [Related]
19. In silico prediction of cytochrome P450-mediated site of metabolism (SOM). Liu X; Shen Q; Li J; Li S; Luo C; Zhu W; Luo X; Zheng M; Jiang H Protein Pept Lett; 2013 Mar; 20(3):279-89. PubMed ID: 22591483 [TBL] [Abstract][Full Text] [Related]
20. Investigation of substrate recognition for cytochrome P450 1A2 mediated by water molecules using docking and molecular dynamics simulations. Watanabe Y; Fukuyoshi S; Kato K; Hiratsuka M; Yamaotsu N; Hirono S; Gouda H; Oda A J Mol Graph Model; 2017 Jun; 74():326-336. PubMed ID: 28475969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]