These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26761633)

  • 21. Evaluation of cooperative systems on driver behavior in heavy fog condition based on a driving simulator.
    Chang X; Li H; Qin L; Rong J; Lu Y; Chen X
    Accid Anal Prev; 2019 Jul; 128():197-205. PubMed ID: 31054492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practice makes better - Learning effects of driving with a multi-stage collision warning.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():398-409. PubMed ID: 29477461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential safety benefits of intelligent cruise control systems.
    Chira-Chavala T; Yoo SM
    Accid Anal Prev; 1994 Apr; 26(2):135-46. PubMed ID: 8198682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving.
    Zhao X; Xu W; Ma J; Li H; Chen Y; Rong J
    Accid Anal Prev; 2019 Jul; 128():206-216. PubMed ID: 31055185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use patterns among early adopters of adaptive cruise control.
    Xiong H; Boyle LN; Moeckli J; Dow BR; Brown TL
    Hum Factors; 2012 Oct; 54(5):722-33. PubMed ID: 23156618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas.
    Weng J; Xue S; Yang Y; Yan X; Qu X
    Accid Anal Prev; 2015 Apr; 77():51-61. PubMed ID: 25687332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
    Bianchi Piccinini GF; Rodrigues CM; Leitão M; Simões A
    J Safety Res; 2014 Jun; 49():77-84. PubMed ID: 24913490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving.
    Scott JJ; Gray R
    Hum Factors; 2008 Apr; 50(2):264-75. PubMed ID: 18516837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active traffic management strategies for expressways based on crash risk prediction of moving vehicle groups.
    Ma W; He Z; Wang L; Abdel-Aty M; Yu C
    Accid Anal Prev; 2021 Dec; 163():106421. PubMed ID: 34662834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method for identifying rear-end collision risks using inductive loop detectors.
    Oh C; Park S; Ritchie SG
    Accid Anal Prev; 2006 Mar; 38(2):295-301. PubMed ID: 16246286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China.
    Tan H; Zhao F; Hao H; Liu Z; Amer AA; Babiker H
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32024226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety measure.
    Zhao P; Lee C
    Accid Anal Prev; 2018 Apr; 113():149-158. PubMed ID: 29407662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An improved automated braking system for rear-end collisions: A study based on a driving simulator experiment.
    Hang J; Yan X; Li X; Duan K; Yang J; Xue Q
    J Safety Res; 2022 Feb; 80():416-427. PubMed ID: 35249623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways.
    Li Y; Wang W; Xing L; Fan Q; Wang H
    Accid Anal Prev; 2018 Feb; 111():133-141. PubMed ID: 29197693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the effectiveness of active vehicle safety systems.
    Jeong E; Oh C
    Accid Anal Prev; 2017 Mar; 100():85-96. PubMed ID: 28129576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of cruise control and adaptive cruise control on driving behaviour--a driving simulator study.
    Markvollrath ; Schleicher S; Gelau C
    Accid Anal Prev; 2011 May; 43(3):1134-9. PubMed ID: 21376911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crash probability estimation via quantifying driver hazard perception.
    Li Y; Zheng Y; Wang J; Kodaka K; Li K
    Accid Anal Prev; 2018 Jul; 116():116-125. PubMed ID: 28595973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.