These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26761641)

  • 1. comets (Constrained Optimization of Multistate Energies by Tree Search): A Provable and Efficient Protein Design Algorithm to Optimize Binding Affinity and Specificity with Respect to Sequence.
    Hallen MA; Donald BR
    J Comput Biol; 2016 May; 23(5):311-21. PubMed ID: 26761641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BBK* (Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces.
    Ojewole AA; Jou JD; Fowler VG; Donald BR
    J Comput Biol; 2018 Jul; 25(7):726-739. PubMed ID: 29641249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimization-Aware Recursive
    Jou JD; Holt GT; Lowegard AU; Donald BR
    J Comput Biol; 2020 Apr; 27(4):550-564. PubMed ID: 31855059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design.
    Jou JD; Jain S; Georgiev IS; Donald BR
    J Comput Biol; 2016 Jun; 23(6):413-24. PubMed ID: 26744898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast gap-free enumeration of conformations and sequences for protein design.
    Roberts KE; Gainza P; Hallen MA; Donald BR
    Proteins; 2015 Oct; 83(10):1859-1877. PubMed ID: 26235965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iCFN: an efficient exact algorithm for multistate protein design.
    Karimi M; Shen Y
    Bioinformatics; 2018 Sep; 34(17):i811-i820. PubMed ID: 30423073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient algorithm for multistate protein design based on FASTER.
    Allen BD; Mayo SL
    J Comput Chem; 2010 Apr; 31(5):904-16. PubMed ID: 19637210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Protein Design Using AND/OR Branch-and-Bound Search.
    Zhou Y; Wu Y; Zeng J
    J Comput Biol; 2016 Jun; 23(6):439-51. PubMed ID: 27167301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of sequence-reactivity space for protein-protein interactions.
    Li J; Yi Z; Laskowski MC; Laskowski M; Bailey-Kellogg C
    Proteins; 2005 Feb; 58(3):661-71. PubMed ID: 15624216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency.
    Hallen MA; Jou JD; Donald BR
    J Comput Biol; 2017 Jun; 24(6):536-546. PubMed ID: 27681371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dead-end elimination for multistate protein design.
    Yanover C; Fromer M; Shifman JM
    J Comput Chem; 2007 Oct; 28(13):2122-9. PubMed ID: 17471460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branch-and-terminate: a combinatorial optimization algorithm for protein design.
    Gordon DB; Mayo SL
    Structure; 1999 Sep; 7(9):1089-98. PubMed ID: 10508778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering.
    Wolfe BR; Porubsky NJ; Zadeh JN; Dirks RM; Pierce NA
    J Am Chem Soc; 2017 Mar; 139(8):3134-3144. PubMed ID: 28191938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive multistate protein design.
    Vucinic J; Simoncini D; Ruffini M; Barbe S; Schiex T
    Bioinformatics; 2020 Jan; 36(1):122-130. PubMed ID: 31199465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel ensemble-based scoring and search algorithm for protein redesign and its application to modify the substrate specificity of the gramicidin synthetase a phenylalanine adenylation enzyme.
    Lilien RH; Stevens BW; Anderson AC; Donald BR
    J Comput Biol; 2005; 12(6):740-61. PubMed ID: 16108714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of native protein ligand-binding and enzyme active site sequences.
    Chakrabarti R; Klibanov AM; Friesner RA
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10153-8. PubMed ID: 15998733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules.
    Warszawski S; Netzer R; Tawfik DS; Fleishman SJ
    J Mol Biol; 2014 Dec; 426(24):4125-4138. PubMed ID: 25311857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.