These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26762691)

  • 1. Methanogens rapidly transition from methane production to iron reduction.
    Sivan O; Shusta SS; Valentine DL
    Geobiology; 2016 Mar; 14(2):190-203. PubMed ID: 26762691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
    Tang J; Zhuang L; Ma J; Tang Z; Yu Z; Zhou S
    Appl Environ Microbiol; 2016 Oct; 82(19):5869-77. PubMed ID: 27451453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments.
    Zheng S; Wang B; Liu F; Wang O
    J Microbiol; 2017 Nov; 55(11):862-870. PubMed ID: 29076069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri.
    Yu L; He D; Yang L; Rensing C; Zeng RJ; Zhou S
    Sci Total Environ; 2022 Oct; 844():157235. PubMed ID: 35817105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals.
    Kato S; Igarashi K
    Microbiologyopen; 2019 Mar; 8(3):e00647. PubMed ID: 29877051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations.
    Bray MS; Wu J; Reed BC; Kretz CB; Belli KM; Simister RL; Henny C; Stewart FJ; DiChristina TJ; Brandes JA; Fowle DA; Crowe SA; Glass JB
    Geobiology; 2017 Sep; 15(5):678-689. PubMed ID: 28419718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.
    Duszenko N; Buan NR
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron (oxyhydr)oxides shift the methanogenic community in deep sea methanic sediment - insights from long-term high-pressure incubations.
    Liang L; Vigderovich H; Sivan O; Hou J; Niu M; Yorshansky O; Zhang T; Bosco-Santos A; Wang F
    Sci Total Environ; 2022 Nov; 848():157590. PubMed ID: 35901888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community.
    Jiang S; Park S; Yoon Y; Lee JH; Wu WM; Phuoc Dan N; Sadowsky MJ; Hur HG
    Environ Sci Technol; 2013 Sep; 47(17):10078-84. PubMed ID: 23919295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
    Egger M; Rasigraf O; Sapart CJ; Jilbert T; Jetten MS; Röckmann T; van der Veen C; Bândă N; Kartal B; Ettwig KF; Slomp CP
    Environ Sci Technol; 2015 Jan; 49(1):277-83. PubMed ID: 25412274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon isotope effects associated with aceticlastic methanogenesis.
    Gelwicks JT; Risatti JB; Hayes JM
    Appl Environ Microbiol; 1994 Feb; 60(2):467-72. PubMed ID: 11536629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese- and iron-dependent marine methane oxidation.
    Beal EJ; House CH; Orphan VJ
    Science; 2009 Jul; 325(5937):184-7. PubMed ID: 19589998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments.
    Riedinger N; Formolo MJ; Lyons TW; Henkel S; Beck A; Kasten S
    Geobiology; 2014 Mar; 12(2):172-81. PubMed ID: 24460948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen production by methanogens under low-hydrogen conditions.
    Valentine DL; Blanton DC; Reeburgh WS
    Arch Microbiol; 2000 Dec; 174(6):415-21. PubMed ID: 11195097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.