BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26762852)

  • 1. Comparative analyses of the proteins from Mycobacterium tuberculosis and human genomes: Identification of potential tuberculosis drug targets.
    Sridhar S; Dash P; Guruprasad K
    Gene; 2016 Mar; 579(1):69-74. PubMed ID: 26762852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analyses for the discovery of tuberculosis drug targets.
    Chung BK; Dick T; Lee DY
    J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv.
    Ramakrishnan G; Chandra NR; Srinivasan N
    Mol Biosyst; 2015 Dec; 11(12):3316-31. PubMed ID: 26429199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis.
    Luo G; Ming T; Yang L; He L; Tao T; Wang Y
    Microbiol Res; 2024 Jul; 284():127675. PubMed ID: 38636239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv.
    Lin X; Xu S; Yang Y; Wu J; Wang H; Shen H; Wang H
    Protein Expr Purif; 2009 Mar; 64(1):8-15. PubMed ID: 18952181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis.
    Defelipe LA; Do Porto DF; Pereira Ramos PI; Nicolás MF; Sosa E; Radusky L; Lanzarotti E; Turjanski AG; Marti MA
    Tuberculosis (Edinb); 2016 Mar; 97():181-92. PubMed ID: 26791267
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sawicki R; Ginalska G
    Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the structural coverage of tuberculosis drug targets.
    Baugh L; Phan I; Begley DW; Clifton MC; Armour B; Dranow DM; Taylor BM; Muruthi MM; Abendroth J; Fairman JW; Fox D; Dieterich SH; Staker BL; Gardberg AS; Choi R; Hewitt SN; Napuli AJ; Myers J; Barrett LK; Zhang Y; Ferrell M; Mundt E; Thompkins K; Tran N; Lyons-Abbott S; Abramov A; Sekar A; Serbzhinskiy D; Lorimer D; Buchko GW; Stacy R; Stewart LJ; Edwards TE; Van Voorhis WC; Myler PJ
    Tuberculosis (Edinb); 2015 Mar; 95(2):142-8. PubMed ID: 25613812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential impact of structural genomics on tuberculosis drug discovery.
    Arcus VL; Lott JS; Johnston JM; Baker EN
    Drug Discov Today; 2006 Jan; 11(1-2):28-34. PubMed ID: 16478688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the potential of intrinsically disordered proteins as drug targets: application to Mycobacterium tuberculosis.
    Anurag M; Dash D
    Mol Biosyst; 2009 Dec; 5(12):1752-7. PubMed ID: 19763328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mycobacterium tuberculosis drugome and its polypharmacological implications.
    Kinnings SL; Xie L; Fung KH; Jackson RM; Xie L; Bourne PE
    PLoS Comput Biol; 2010 Nov; 6(11):e1000976. PubMed ID: 21079673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics.
    Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC
    Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs.
    Raman K; Rajagopalan P; Chandra N
    PLoS Comput Biol; 2005 Oct; 1(5):e46. PubMed ID: 16261191
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Nunes JES; Duque MA; de Freitas TF; Galina L; Timmers LFSM; Bizarro CV; Machado P; Basso LA; Ducati RG
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32168746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug discovery in tuberculosis: a molecular approach.
    Mitra PP
    Indian J Tuberc; 2012 Oct; 59(4):194-206. PubMed ID: 23342539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring optimal drug targets through subtractive proteomics analysis and pangenomic insights for tailored drug design in tuberculosis.
    Khan MF; Ali A; Rehman HM; Noor Khan S; Hammad HM; Waseem M; Wu Y; Clark TG; Jabbar A
    Sci Rep; 2024 May; 14(1):10904. PubMed ID: 38740859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.