These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 26762899)

  • 1. Small Glutamine-Rich Tetratricopeptide Repeat-Containing Protein Alpha (SGTA) Ablation Limits Offspring Viability and Growth in Mice.
    Philp LK; Day TK; Butler MS; Laven-Law G; Jindal S; Hickey TE; Scher HI; Butler LM; Tilley WD
    Sci Rep; 2016 Jun; 6():28950. PubMed ID: 27358191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Similarities and Differences between Canine Prostate Cancer and Human Prostate Cancer Variants.
    Vasilatis DM; Lucchesi CA; Ghosh PM
    Biomedicines; 2023 Apr; 11(4):. PubMed ID: 37189720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions.
    Nascente EP; Amorim RL; Fonseca-Alves CE; de Moura VMBD
    Cancers (Basel); 2022 May; 14(11):. PubMed ID: 35681707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-Glycoprotein and Androgen Receptor Expression Reveals Independence of Canine Prostate Cancer from Androgen Hormone Stimulation.
    Cavalca AMB; Brandi A; Fonseca-Alves RH; Laufer-Amorim R; Fonseca-Alves CE
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures.
    Packeiser EM; Taher L; Kong W; Ernst M; Beck J; Hewicker-Trautwein M; Brenig B; Schütz E; Murua Escobar H; Nolte I
    Cancer Cell Int; 2022 Feb; 22(1):54. PubMed ID: 35109825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and characterization of stable red, far-red (fR) and near infra-red (NIR) transfected canine prostate cancer cell lines.
    Liu W; Sender S; Kong W; Beck J; Sekora A; Bornemann-Kolatzki K; Schuetz E; Junghanss C; Brenig B; Nolte I; Murua Escobar H
    Cancer Cell Int; 2020; 20():139. PubMed ID: 32368185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.
    Elshafae SM; Dirksen WP; Alasonyalilar-Demirer A; Breitbach J; Yuan S; Kantake N; Supsavhad W; Hassan BB; Attia Z; Alstadt LB; Rosol TJ
    Prostate; 2020 Jun; 80(9):698-714. PubMed ID: 32348616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis.
    Packeiser EM; Hewicker-Trautwein M; Thiemeyer H; Mohr A; Junginger J; Schille JT; Murua Escobar H; Nolte I
    PLoS One; 2020; 15(3):e0230272. PubMed ID: 32168360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SGTA: a new player in the molecular co-chaperone game.
    Philp LK; Butler MS; Hickey TE; Butler LM; Tilley WD; Day TK
    Horm Cancer; 2013 Dec; 4(6):343-57. PubMed ID: 23818240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha.
    Roberts JD; Thapaliya A; Martínez-Lumbreras S; Krysztofinska EM; Isaacson RL
    Front Mol Biosci; 2015; 2():71. PubMed ID: 26734616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The canine prostate cancer cell line CHP-1 shows over-expression of the co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α.
    Azakami D; Nakahira R; Kato Y; Michishita M; Kobayashi M; Onozawa E; Bonkobara M; Kobayashi M; Takahashi K; Watanabe M; Ishioka K; Sako T; Ochiai K; Omi T
    Vet Comp Oncol; 2017 Jun; 15(2):557-562. PubMed ID: 26762899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of canine co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) and investigation of its ability to suppress androgen receptor signalling in androgen-independent prostate cancer.
    Kato Y; Ochiai K; Michishita M; Azakami D; Nakahira R; Morimatsu M; Ishiguro-Oonuma T; Yoshikawa Y; Kobayashi M; Bonkobara M; Kobayashi M; Takahashi K; Watanabe M; Omi T
    Vet J; 2015 Nov; 206(2):143-8. PubMed ID: 26346258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.
    Kato Y; Ochiai K; Kawakami S; Nakao N; Azakami D; Bonkobara M; Michishita M; Morimatsu M; Watanabe M; Omi T
    BMC Vet Res; 2017 Jun; 13(1):170. PubMed ID: 28599655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor suppressor REIC/DKK-3 and co-chaperone SGTA: Their interaction and roles in the androgen sensitivity.
    Ochiai K; Morimatsu M; Kato Y; Ishiguro-Oonuma T; Udagawa C; Rungsuriyawiboon O; Azakami D; Michishita M; Ariyoshi Y; Ueki H; Nasu Y; Kumon H; Watanabe M; Omi T
    Oncotarget; 2016 Jan; 7(3):3283-96. PubMed ID: 26658102
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.