These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26763293)

  • 21. Open-Source Assisted Laboratory Automation through Graphical User Interfaces and 3D Printers: Application to Equipment Hyphenation for Higher-Order Data Generation.
    Siano GG; Montemurro M; Alcaráz MR; Goicoechea HC
    Anal Chem; 2017 Oct; 89(20):10667-10672. PubMed ID: 28903001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open source capillary electrophoresis.
    Kubáň P; Foret F; Erny G
    Electrophoresis; 2019 Jan; 40(1):65-78. PubMed ID: 30229967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MVO Automation Platform: Addressing Unmet Needs in Clinical Laboratories with Microcontrollers, 3D Printing, and Open-Source Hardware/Software.
    Iglehart B
    SLAS Technol; 2018 Oct; 23(5):423-431. PubMed ID: 29746790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Open Labware: 3-D printing your own lab equipment.
    Baden T; Chagas AM; Gage GJ; Marzullo TC; Prieto-Godino LL; Euler T
    PLoS Biol; 2015 Mar; 13(3):e1002086. PubMed ID: 25794301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.
    Reid JA; Mollica PA; Johnson GD; Ogle RC; Bruno RD; Sachs PC
    Biofabrication; 2016 Jun; 8(2):025017. PubMed ID: 27271208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring pathways toward open-hardware ecosystems to safeguard genetic resources for biomedical research communities using aquatic model species.
    Liu Y; Koch JC; Arregui L; Oune A; Bodenstein S; Gutierrez-Wing MT; Tiersch TR
    J Exp Zool B Mol Dev Evol; 2024 May; 342(3):278-290. PubMed ID: 38185943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a modular and low-latency virtual-environment platform for applications in motor adaptation research, neurological disorders, and neurorehabilitation.
    Myall DJ; MacAskill MR; Davidson PR; Anderson TJ; Jones RD
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):298-309. PubMed ID: 18586609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.
    Fuller SM; Butz DR; Vevang CB; Makhlouf MV
    J Hand Surg Am; 2014 Sep; 39(9):1840-5. PubMed ID: 25042538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.
    Milanovic JZ; Milanovic P; Kragic R; Kostic M
    PLoS One; 2018; 13(3):e0193744. PubMed ID: 29509793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An open source 3-d printed modular micro-drive system for acute neurophysiology.
    Patel SR; Ghose K; Eskandar EN
    PLoS One; 2014; 9(4):e94262. PubMed ID: 24736691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication.
    Meloni GN; Bertotti M
    PLoS One; 2017; 12(7):e0182000. PubMed ID: 28753638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-Printable and open-source modular smartphone visible spectrophotometer.
    Winters BJ; Banfield N; Dixon C; Swensen A; Holman D; Fillbrown B
    HardwareX; 2021 Oct; 10():e00232. PubMed ID: 35607665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing physiology laboratory technology.
    Sulkin MS; Widder E; Shao C; Holzem KM; Gloschat C; Gutbrod SR; Efimov IR
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1569-73. PubMed ID: 24043254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance polymer 3D printing - Open-source liquid cooled scalable printer design.
    Birkelid AH; Eikevåg SW; Elverum CW; Steinert M
    HardwareX; 2022 Apr; 11():e00265. PubMed ID: 35509936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes.
    Valderrama JT; de la Torre A; Alvarez I; Segura JC; Sainz M; Vargas JL
    Biomed Tech (Berl); 2014 Oct; 59(5):447-59. PubMed ID: 24870606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hardware and software design for a National Instrument-based magnetic induction tomography system for prospective biomedical applications.
    Wei HY; Soleimani M
    Physiol Meas; 2012 May; 33(5):863-79. PubMed ID: 22531316
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Ali AS; Coté C; Heidarinejad M; Stephens B
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a 3-D Printing Laboratory for Foot and Ankle Applications.
    Pehde CE; Bennett J; Lee Peck B; Gull L
    Clin Podiatr Med Surg; 2020 Apr; 37(2):195-213. PubMed ID: 32146978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a sensor and measurement platform for water quality observations: design, sensor integration, 3D printing, and open-source hardware.
    Kinar NJ; Brinkmann M
    Environ Monit Assess; 2022 Feb; 194(3):207. PubMed ID: 35190903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.