These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 26763294)

  • 21. Economic savings for scientific free and open source technology: A review.
    Pearce JM
    HardwareX; 2020 Oct; 8():e00139. PubMed ID: 32923748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling.
    Behrens MR; Fuller HC; Swist ER; Wu J; Islam MM; Long Z; Ruder WC; Steward R
    Sci Rep; 2020 Jan; 10(1):1543. PubMed ID: 32005961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification.
    Jin SQ; Guo SM; Zuo P; Ye BC
    Biosens Bioelectron; 2015 Jan; 63():379-383. PubMed ID: 25127472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FLASH: a rapid method for prototyping paper-based microfluidic devices.
    Martinez AW; Phillips ST; Wiley BJ; Gupta M; Whitesides GM
    Lab Chip; 2008 Dec; 8(12):2146-50. PubMed ID: 19023478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine.
    Yan Y; Huang X; Yuan L; Tang Y; Zhu W; Du H; Nie J; Zhang L; Liao S; Tang X; Zhang Y
    Anal Bioanal Chem; 2024 Jul; 416(18):4131-4141. PubMed ID: 38780654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems.
    Lee Y; Kim B; Oh I; Choi S
    Small; 2018 Dec; 14(52):e1802769. PubMed ID: 30375722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.
    Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP
    Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Open source surgical fracture table for digitally distributed manufacturing.
    Bow JK; Gallup N; Sadat SA; Pearce JM
    PLoS One; 2022; 17(7):e0270328. PubMed ID: 35839177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.
    Salentijn GI; Oomen PE; Grajewski M; Verpoorte E
    Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.