BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2676344)

  • 1. Setting and monitoring of high-frequency jet ventilation in severe respiratory distress syndrome.
    Jonson B; Lachmann B
    Crit Care Med; 1989 Oct; 17(10):1020-4. PubMed ID: 2676344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome.
    Keszler M; Modanlou HD; Brudno DS; Clark FI; Cohen RS; Ryan RM; Kaneta MK; Davis JM
    Pediatrics; 1997 Oct; 100(4):593-9. PubMed ID: 9310511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of the oxygenation and decrease of the intrapulmonary peak pressure at constant mean airway pressure using high-frequency jet ventilation in adult rabbits with lavage-induced severe respiratory distress syndrome compared to conventional mechanical ventilation.
    Merker G; Jarke D; Oddoy A; Böhnke J
    Z Erkr Atmungsorgane; 1989; 172(3):282-91. PubMed ID: 2508337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental randomized study of five different ventilatory modes in a piglet model of severe respiratory distress.
    Lichtwarck-Aschoff M; Nielsen JB; Sjöstrand UH; Edgren EL
    Intensive Care Med; 1992; 18(6):339-47. PubMed ID: 1469161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of high-frequency jet ventilation to conventional ventilation in adults with respiratory distress syndrome.
    Holzapfel L; Robert D; Perrin F; Gaussorgues P; Giudicelli DP
    Intensive Care Med; 1987; 13(2):100-5. PubMed ID: 3553269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Setting positive end-expiratory pressure during jet ventilation to replicate the mean airway pressure of oscillatory ventilation.
    Bass AL; Gentile MA; Heinz JP; Craig DM; Hamel DS; Cheifetz IM
    Respir Care; 2007 Jan; 52(1):50-5. PubMed ID: 17194318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiopulmonary effects of positive pressure ventilation during acute lung injury.
    Romand JA; Shi W; Pinsky MR
    Chest; 1995 Oct; 108(4):1041-8. PubMed ID: 7555117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral and cardiopulmonary responses to high-frequency jet ventilation and conventional mechanical ventilation in a model of brain and lung injury.
    Shuptrine JR; Auffant RA; Gal TJ
    Anesth Analg; 1984 Dec; 63(12):1065-70. PubMed ID: 6391277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency jet ventilation in children with the adult respiratory distress syndrome complicated by pulmonary barotrauma.
    Smith DW; Frankel LR; Derish MT; Moody RR; Black LE; Chipps BE; Mathers LH
    Pediatr Pulmonol; 1993 May; 15(5):279-86. PubMed ID: 8327286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency jet ventilation versus intermittent positive-pressure ventilation.
    Sladen A; Guntupalli K; Klain M
    Crit Care Med; 1984 Sep; 12(9):788-90. PubMed ID: 6380941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adult respiratory distress syndrome: improved oxygenation during high-frequency jet ventilation/continuous positive airway pressure.
    Hurst JM; DeHaven CB
    Surgery; 1984 Oct; 96(4):764-9. PubMed ID: 6385318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High positive end-expiratory pressure during high-frequency jet ventilation improves oxygenation and ventilation in preterm lambs.
    Musk GC; Polglase GR; Bunnell JB; McLean CJ; Nitsos I; Song Y; Pillow JJ
    Pediatr Res; 2011 Apr; 69(4):319-24. PubMed ID: 21178822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Initial Response to High-Frequency Jet Ventilation in Premature Infants With Hypercapnic Respiratory Failure.
    Wheeler CR; Smallwood CD; O'Donnell I; Gagner D; Sola-Visner MC
    Respir Care; 2017 Jul; 62(7):867-872. PubMed ID: 28377402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive value of FRC and respiratory compliance on pulmonary gas exchange induced by high frequency jet ventilation in humans.
    Pittet JF; Morel DR; Bachmann M; Forster A; Suter PM
    Br J Anaesth; 1990 Apr; 64(4):460-8. PubMed ID: 2185815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined high-frequency ventilation in children with severe adult respiratory distress syndrome.
    Berner ME; Rouge JC; Suter PM
    Intensive Care Med; 1991; 17(4):209-14. PubMed ID: 1744305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of positive end-expiratory pressure during partial liquid ventilation in acute lung injury in piglets.
    Zobel G; Rödl S; Urlesberger B; Dacar D; Trafojer U; Trantina A
    Crit Care Med; 1999 Sep; 27(9):1934-9. PubMed ID: 10507621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of high-frequency jet ventilation with varying cardiac-cycle specific synchronization on cardiac output in ARDS.
    Angus DC; Lidsky NM; Dotterweich LM; Pinsky MR
    Chest; 1997 Dec; 112(6):1600-6. PubMed ID: 9404760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent positive pressure ventilation with either positive end-expiratory pressure or high frequency jet ventilation (HFJV), or HFJV alone in human acute respiratory failure.
    Brichant JF; Rouby JJ; Viars P
    Anesth Analg; 1986 Nov; 65(11):1135-42. PubMed ID: 3094403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airway pressure as a measure of gas exchange during high-frequency jet ventilation.
    Waterson CK; Militzer HW; Quan SF; Calkins JM
    Crit Care Med; 1984 Sep; 12(9):742-6. PubMed ID: 6432437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic effects of high-frequency jet ventilation in dogs with a chronically banded pulmonary artery.
    Ushijima K; Dahm M; Yellin EL; Oka Y; Goldiner PL
    Crit Care Med; 1989 Jun; 17(6):541-6. PubMed ID: 2656098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.