BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26763586)

  • 1. Controlled multi-arm platform design using predictive probability.
    Hobbs BP; Chen N; Lee JJ
    Stat Methods Med Res; 2018 Jan; 27(1):65-78. PubMed ID: 26763586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design.
    Richert L; Doussau A; Lelièvre JD; Arnold V; Rieux V; Bouakane A; Lévy Y; Chêne G; Thiébaut R;
    Trials; 2014 Feb; 15():68. PubMed ID: 24571662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modest proposal for dropping poor arms in clinical trials.
    Proschan MA; Dodd LE
    Stat Med; 2014 Aug; 33(19):3241-52. PubMed ID: 24757049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predictive probability design for phase II cancer clinical trials.
    Lee JJ; Liu DD
    Clin Trials; 2008; 5(2):93-106. PubMed ID: 18375647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian-frequentist two-stage single-arm phase II clinical trial design.
    Dong G; Shih WJ; Moore D; Quan H; Marcella S
    Stat Med; 2012 Aug; 31(19):2055-67. PubMed ID: 22415966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adding new experimental arms to randomised clinical trials: Impact on error rates.
    Choodari-Oskooei B; Bratton DJ; Gannon MR; Meade AM; Sydes MR; Parmar MK
    Clin Trials; 2020 Jun; 17(3):273-284. PubMed ID: 32063029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian adaptive designs for multi-arm trials: an orthopaedic case study.
    Ryan EG; Lamb SE; Williamson E; Gates S
    Trials; 2020 Jan; 21(1):83. PubMed ID: 31937341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.
    Yuan Y; Guo B; Munsell M; Lu K; Jazaeri A
    Stat Med; 2016 Sep; 35(22):3892-906. PubMed ID: 27112322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-arm multi-stage clinical trial design for binary outcomes with application to tuberculosis.
    Bratton DJ; Phillips PP; Parmar MK
    BMC Med Res Methodol; 2013 Nov; 13():139. PubMed ID: 24229079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials.
    Wason JM; Trippa L
    Stat Med; 2014 Jun; 33(13):2206-21. PubMed ID: 24421053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian multi-arm multi-stage clinical trial design incorporating information about treatment ordering.
    Serra A; Mozgunov P; Jaki T
    Stat Med; 2023 Jul; 42(16):2841-2854. PubMed ID: 37158302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian designs with frequentist and Bayesian error rate considerations.
    Wang YG; Leung DH; Li M; Tan SB
    Stat Methods Med Res; 2005 Oct; 14(5):445-56. PubMed ID: 16248347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of multi-arm multi-stage design and adaptive randomization in platform clinical trials.
    Lin J; Bunn V
    Contemp Clin Trials; 2017 Mar; 54():48-59. PubMed ID: 28089763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New designs for the selection of treatments to be tested in randomized clinical trials.
    Simon R; Thall PF; Ellenberg SS
    Stat Med; 1994 Mar 15-Apr 15; 13(5-7):417-29. PubMed ID: 8023026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical inference for response adaptive randomization procedures with adjusted optimal allocation proportions.
    Zhu H
    J Biopharm Stat; 2017; 27(5):732-740. PubMed ID: 27937121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation optimization for Bayesian multi-arm multi-stage clinical trial with binary endpoints.
    Yu Z; Ramakrishnan V; Meinzer C
    J Biopharm Stat; 2019; 29(2):306-317. PubMed ID: 30763151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian group sequential designs for phase III emergency medicine trials: a case study using the PARAMEDIC2 trial.
    Ryan EG; Stallard N; Lall R; Ji C; Perkins GD; Gates S
    Trials; 2020 Jan; 21(1):84. PubMed ID: 31937351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian adaptive decision-theoretic designs for multi-arm multi-stage clinical trials.
    Bassi A; Berkhof J; de Jong D; van de Ven PM
    Stat Methods Med Res; 2021 Mar; 30(3):717-730. PubMed ID: 33243087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs.
    Colditz GA
    Crit Rev Food Sci Nutr; 2010; 50 Suppl 1(s1):10-2. PubMed ID: 21132580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.