These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26763657)

  • 1. Conformations of Low-Molecular-Weight Lignin Polymers in Water.
    Petridis L; Smith JC
    ChemSusChem; 2016 Feb; 9(3):289-95. PubMed ID: 26763657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation analysis of the temperature dependence of lignin structure and dynamics.
    Petridis L; Schulz R; Smith JC
    J Am Chem Soc; 2011 Dec; 133(50):20277-87. PubMed ID: 22035184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why genetic modification of lignin leads to low-recalcitrance biomass.
    Carmona C; Langan P; Smith JC; Petridis L
    Phys Chem Chem Phys; 2015 Jan; 17(1):358-64. PubMed ID: 25384960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation.
    Lindner B; Petridis L; Schulz R; Smith JC
    Biomacromolecules; 2013 Oct; 14(10):3390-8. PubMed ID: 23980921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.
    Gupta C; Washburn NR
    Langmuir; 2014 Aug; 30(31):9303-12. PubMed ID: 25046477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation.
    Petridis L; Pingali SV; Urban V; Heller WT; O'Neill HM; Foston M; Ragauskas A; Smith JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061911. PubMed ID: 21797407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.
    Ko JK; Kim Y; Ximenes E; Ladisch MR
    Biotechnol Bioeng; 2015 Feb; 112(2):252-62. PubMed ID: 25082660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.
    Mostofian B; Cai CM; Smith MD; Petridis L; Cheng X; Wyman CE; Smith JC
    J Am Chem Soc; 2016 Aug; 138(34):10869-78. PubMed ID: 27482599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence.
    Shen T; Langan P; French AD; Johnson GP; Gnanakaran S
    J Am Chem Soc; 2009 Oct; 131(41):14786-94. PubMed ID: 19824731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of lignin level on release of hemicellulose-derived sugars in liquid hot water.
    Yu Q; Zhuang X; Yuan Z; Kong X; Qi W; Wang W; Wang Q; Tan X
    Int J Biol Macromol; 2016 Jan; 82():967-72. PubMed ID: 26484600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles.
    Kang Y; Realff MJ; Sohn M; Lee JH; Bommarius AS
    Biotechnol Prog; 2015; 31(1):25-34. PubMed ID: 25311613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment methods for bioethanol production.
    Xu Z; Huang F
    Appl Biochem Biotechnol; 2014 Sep; 174(1):43-62. PubMed ID: 24972651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-like dynamics of polycarbonate polymers in water.
    Zidar J; Lim GS; Cheong DW; Klähn M
    J Phys Chem B; 2015 Jan; 119(1):316-29. PubMed ID: 25434738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the lignin glass transition.
    Vural D; Smith JC; Petridis L
    Phys Chem Chem Phys; 2018 Aug; 20(31):20504-20512. PubMed ID: 30046795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass.
    Acharjee TC; Coronella CJ; Vasquez VR
    Bioresour Technol; 2011 Apr; 102(7):4849-54. PubMed ID: 21310606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.
    Yin DT; Jing Q; AlDajani WW; Duncan S; Tschirner U; Schilling J; Kazlauskas RJ
    Bioresour Technol; 2011 Apr; 102(8):5183-92. PubMed ID: 21345668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.