BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26763709)

  • 1. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles.
    Tedeschi JN; Kennington WJ; Tomkins JL; Berry O; Whiting S; Meekan MG; Mitchell NJ
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression of Hsp70 and Hsp90 mRNA as biomarkers of thermal stress in loggerhead turtle embryos (Caretta Caretta).
    Tedeschi JN; Kennington WJ; Berry O; Whiting S; Meekan M; Mitchell NJ
    J Therm Biol; 2015 Jan; 47():42-50. PubMed ID: 25526653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loggerhead sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress.
    Bentley BP; Haas BJ; Tedeschi JN; Berry O
    Mol Ecol; 2017 Jun; 26(11):2978-2992. PubMed ID: 28267875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock protein expression enhances heat tolerance of reptile embryos.
    Gao J; Zhang W; Dang W; Mou Y; Gao Y; Sun BJ; Du WG
    Proc Biol Sci; 2014 Sep; 281(1791):20141135. PubMed ID: 25080340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change.
    Howard R; Bell I; Pike DA
    J Exp Biol; 2015 Oct; 218(Pt 20):3330-5. PubMed ID: 26347558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat tolerance of reptile embryos: Current knowledge, methodological considerations, and future directions.
    Hall JM; Sun BJ
    J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):45-58. PubMed ID: 32757379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of sand moisture on the temperature-sex ratio responses of developing loggerhead (Caretta caretta) sea turtles.
    Lolavar A; Wyneken J
    Zoology (Jena); 2020 Feb; 138():125739. PubMed ID: 31954221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model to predict the thermal reaction norm for the embryo growth rate from field data.
    Girondot M; Kaska Y
    J Therm Biol; 2014 Oct; 45():96-102. PubMed ID: 25436957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting the viability of sea turtle eggs in a warming world.
    Pike DA
    Glob Chang Biol; 2014 Jan; 20(1):7-15. PubMed ID: 24106042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latitudinal and Temperature-Dependent Variation in Embryonic Development Rate and Offspring Performance in a Freshwater Turtle.
    Li T; Cao P; Bei YJ; Du WG
    Physiol Biochem Zool; 2018; 91(1):673-681. PubMed ID: 29116881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turtle embryos move to optimal thermal environments within the egg.
    Zhao B; Li T; Shine R; Du WG
    Biol Lett; 2013 Aug; 9(4):20130337. PubMed ID: 23760168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes.
    Cocci P; Capriotti M; Mosconi G; Palermo FA
    Environ Res; 2017 Oct; 158():616-624. PubMed ID: 28719870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of constant and fluctuating incubation temperatures on hatching success and hatchling traits in the diamondback terrapin (Malaclemys terrapin) in the context of the warming climate.
    Rowe CL; Liang D; Woodland RJ
    J Therm Biol; 2020 Feb; 88():102528. PubMed ID: 32126003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming.
    Barua D; Heckathorn SA; Coleman JS
    J Integr Plant Biol; 2008 Nov; 50(11):1440-51. PubMed ID: 19017131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito
    Ware-Gilmore F; Novelo M; Sgrò CM; Hall MD; McGraw EA
    Philos Trans R Soc Lond B Biol Sci; 2023 Mar; 378(1873):20220011. PubMed ID: 36744557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle.
    Reneker JL; Kamel SJ
    Sci Rep; 2016 Jul; 6():29237. PubMed ID: 27363786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incubation environment and parental identity affect sea turtle development and hatchling phenotype.
    Tezak B; Bentley B; Arena M; Mueller S; Snyder T; Sifuentes-Romero I
    Oecologia; 2020 Apr; 192(4):939-951. PubMed ID: 32270269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of increased constant incubation temperature and cumulative acute heat shock exposures on morphology and survival of Lake Whitefish (Coregonus clupeaformis) embryos.
    Lee AH; Eme J; Mueller CA; Manzon RG; Somers CM; Boreham DR; Wilson JY
    J Therm Biol; 2016 Apr; 57():11-20. PubMed ID: 27033035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
    Telemeco RS; Gangloff EJ; Cordero GA; Mitchell TS; Bodensteiner BL; Holden KG; Mitchell SM; Polich RL; Janzen FJ
    Am Nat; 2016 Jul; 188(1):E13-27. PubMed ID: 27322129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.