These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 26763709)
1. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles. Tedeschi JN; Kennington WJ; Tomkins JL; Berry O; Whiting S; Meekan MG; Mitchell NJ Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763709 [TBL] [Abstract][Full Text] [Related]
2. Increased expression of Hsp70 and Hsp90 mRNA as biomarkers of thermal stress in loggerhead turtle embryos (Caretta Caretta). Tedeschi JN; Kennington WJ; Berry O; Whiting S; Meekan M; Mitchell NJ J Therm Biol; 2015 Jan; 47():42-50. PubMed ID: 25526653 [TBL] [Abstract][Full Text] [Related]
3. Loggerhead sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress. Bentley BP; Haas BJ; Tedeschi JN; Berry O Mol Ecol; 2017 Jun; 26(11):2978-2992. PubMed ID: 28267875 [TBL] [Abstract][Full Text] [Related]
4. Heat shock protein expression enhances heat tolerance of reptile embryos. Gao J; Zhang W; Dang W; Mou Y; Gao Y; Sun BJ; Du WG Proc Biol Sci; 2014 Sep; 281(1791):20141135. PubMed ID: 25080340 [TBL] [Abstract][Full Text] [Related]
5. Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change. Howard R; Bell I; Pike DA J Exp Biol; 2015 Oct; 218(Pt 20):3330-5. PubMed ID: 26347558 [TBL] [Abstract][Full Text] [Related]
6. Heat tolerance of reptile embryos: Current knowledge, methodological considerations, and future directions. Hall JM; Sun BJ J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):45-58. PubMed ID: 32757379 [TBL] [Abstract][Full Text] [Related]
7. The impact of sand moisture on the temperature-sex ratio responses of developing loggerhead (Caretta caretta) sea turtles. Lolavar A; Wyneken J Zoology (Jena); 2020 Feb; 138():125739. PubMed ID: 31954221 [TBL] [Abstract][Full Text] [Related]
8. Variability in thermal tolerance of clutches from different mothers indicates adaptation potential to climate warming in sea turtles. Kynoch C; Paladino FV; Spotila JR; Santidrián Tomillo P Glob Chang Biol; 2024 Aug; 30(8):e17447. PubMed ID: 39098999 [TBL] [Abstract][Full Text] [Related]
9. A model to predict the thermal reaction norm for the embryo growth rate from field data. Girondot M; Kaska Y J Therm Biol; 2014 Oct; 45():96-102. PubMed ID: 25436957 [TBL] [Abstract][Full Text] [Related]
10. Forecasting the viability of sea turtle eggs in a warming world. Pike DA Glob Chang Biol; 2014 Jan; 20(1):7-15. PubMed ID: 24106042 [TBL] [Abstract][Full Text] [Related]
11. Latitudinal and Temperature-Dependent Variation in Embryonic Development Rate and Offspring Performance in a Freshwater Turtle. Li T; Cao P; Bei YJ; Du WG Physiol Biochem Zool; 2018; 91(1):673-681. PubMed ID: 29116881 [TBL] [Abstract][Full Text] [Related]
12. Gene expression dynamics during temperature-dependent sex determination in a sea turtle. Martínez-Pacheco M; Díaz-Barba K; Pérez-Molina R; Marmolejo-Valencia A; Collazo-Saldaña P; Escobar-Rodríguez M; Sánchez-Pérez M; Meneses-Acosta A; Martínez-Rizo AB; Sánchez-Pacheco AU; Furlan-Magaril M; Merchant-Larios H; Cortez D Dev Biol; 2024 Oct; 514():99-108. PubMed ID: 38914191 [TBL] [Abstract][Full Text] [Related]
13. High thermal tolerance of egg clutches and potential adaptive capacity in green turtles. Santidrián Tomillo P; Cordero-Umaña K; Valverde-Cantillo V Sci Total Environ; 2024 Nov; 952():175961. PubMed ID: 39226957 [TBL] [Abstract][Full Text] [Related]
14. Turtle embryos move to optimal thermal environments within the egg. Zhao B; Li T; Shine R; Du WG Biol Lett; 2013 Aug; 9(4):20130337. PubMed ID: 23760168 [TBL] [Abstract][Full Text] [Related]
15. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. Cocci P; Capriotti M; Mosconi G; Palermo FA Environ Res; 2017 Oct; 158():616-624. PubMed ID: 28719870 [TBL] [Abstract][Full Text] [Related]
16. Chapter 2. Vulnerability of marine turtles to climate change. Poloczanska ES; Limpus CJ; Hays GC Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975 [TBL] [Abstract][Full Text] [Related]
17. Effects of constant and fluctuating incubation temperatures on hatching success and hatchling traits in the diamondback terrapin (Malaclemys terrapin) in the context of the warming climate. Rowe CL; Liang D; Woodland RJ J Therm Biol; 2020 Feb; 88():102528. PubMed ID: 32126003 [TBL] [Abstract][Full Text] [Related]
18. Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. Barua D; Heckathorn SA; Coleman JS J Integr Plant Biol; 2008 Nov; 50(11):1440-51. PubMed ID: 19017131 [TBL] [Abstract][Full Text] [Related]
19. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Ware-Gilmore F; Novelo M; Sgrò CM; Hall MD; McGraw EA Philos Trans R Soc Lond B Biol Sci; 2023 Mar; 378(1873):20220011. PubMed ID: 36744557 [TBL] [Abstract][Full Text] [Related]
20. The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle. Reneker JL; Kamel SJ Sci Rep; 2016 Jul; 6():29237. PubMed ID: 27363786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]