These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 26764048)

  • 21. Oxygen sensing in the body.
    Lahiri S; Roy A; Baby SM; Hoshi T; Semenza GL; Prabhakar NR
    Prog Biophys Mol Biol; 2006 Jul; 91(3):249-86. PubMed ID: 16137743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia.
    Sobrino V; González-Rodríguez P; Annese V; López-Barneo J; Pardal R
    EMBO Rep; 2018 Mar; 19(3):. PubMed ID: 29335248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
    Makarenko VV; Peng YJ; Yuan G; Fox AP; Kumar GK; Nanduri J; Prabhakar NR
    Am J Physiol Cell Physiol; 2015 Jan; 308(2):C146-54. PubMed ID: 25377087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen sensitive Kv channels in the carotid body.
    López-López JR; Pérez-García MT
    Respir Physiol Neurobiol; 2007 Jul; 157(1):65-74. PubMed ID: 17442633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body.
    Kääb S; Miguel-Velado E; López-López JR; Pérez-García MT
    J Physiol; 2005 Jul; 566(Pt 2):395-408. PubMed ID: 15890707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors.
    Timón-Gómez A; Scharr AL; Wong NY; Ni E; Roy A; Liu M; Chau J; Lampert JL; Hireed H; Kim NS; Jan M; Gupta AR; Day RW; Gardner JM; Wilson RJA; Barrientos A; Chang AJ
    Elife; 2022 Oct; 11():. PubMed ID: 36255054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.
    Chang AJ
    J Appl Physiol (1985); 2017 Nov; 123(5):1335-1343. PubMed ID: 28819004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing.
    Bernardini A; Wolf A; Brockmeier U; Riffkin H; Metzen E; Acker-Palmer A; Fandrey J; Acker H
    Am J Physiol Cell Physiol; 2020 Apr; 318(4):C719-C731. PubMed ID: 31967857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors.
    Cabello-Rivera D; Ortega-Sáenz P; Gao L; Muñoz-Cabello AM; Bonilla-Henao V; Schumacker PT; López-Barneo J
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2202178119. PubMed ID: 36122208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetrodotoxin as a tool to elucidate sensory transduction mechanisms: the case for the arterial chemoreceptors of the carotid body.
    Rocher A; Caceres AI; Obeso A; Gonzalez C
    Mar Drugs; 2011 Dec; 9(12):2683-2704. PubMed ID: 22363245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia.
    Platero-Luengo A; González-Granero S; Durán R; Díaz-Castro B; Piruat JI; García-Verdugo JM; Pardal R; López-Barneo J
    Cell; 2014 Jan; 156(1-2):291-303. PubMed ID: 24439383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia.
    Ortiz FC; Del Rio R; Ebensperger G; Reyes VR; Alcayaga J; Varas R; Iturriaga R
    Respir Physiol Neurobiol; 2013 Feb; 185(3):600-7. PubMed ID: 23219812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute O
    Arias-Mayenco I; González-Rodríguez P; Torres-Torrelo H; Gao L; Fernández-Agüera MC; Bonilla-Henao V; Ortega-Sáenz P; López-Barneo J
    Cell Metab; 2018 Jul; 28(1):145-158.e4. PubMed ID: 29887397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular mechanisms of oxygen chemoreception in the carotid body.
    Gonzalez C; Lopez-Lopez JR; Obeso A; Perez-Garcia MT; Rocher A
    Respir Physiol; 1995 Dec; 102(2-3):137-47. PubMed ID: 8904006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen sensing by the carotid body chemoreceptors.
    Prabhakar NR
    J Appl Physiol (1985); 2000 Jun; 88(6):2287-95. PubMed ID: 10846047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of oxygen sensing in peripheral arterial chemoreceptors.
    Lahiri S; Rozanov C; Roy A; Storey B; Buerk DG
    Int J Biochem Cell Biol; 2001 Aug; 33(8):755-74. PubMed ID: 11404180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring Functional Responses to Hypoxia in Single Carotid Body Cells.
    Muñoz-Cabello AM; Torres-Torrelo H; Arias-Mayenco I; Ortega-Sáenz P; López-Barneo J
    Methods Mol Biol; 2018; 1742():125-137. PubMed ID: 29330796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α.
    Ortega-Sáenz P; Moreno-Domínguez A; Gao L; López-Barneo J
    Front Physiol; 2020; 11():614893. PubMed ID: 33329066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.