These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26764200)

  • 1. Nitric oxide inhibits basolateral 10-pS Cl
    Wu P; Gao Z; Ye S; Qi Z
    Am J Physiol Renal Physiol; 2016 Apr; 310(8):F755-F762. PubMed ID: 26764200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of S-nitroso-N-acetylpenicillamine on the basolateral 10-pS Cl- channel in thick ascending limb.
    Ye S; Wu P; Gao Z; Wang M; Zhou L; Qi Z
    PLoS One; 2023; 18(4):e0284707. PubMed ID: 37083928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.
    Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R
    Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells.
    Hasebe M; Yoshino M
    J Neurophysiol; 2016 Jun; 115(6):3174-85. PubMed ID: 26984419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the nitric oxide-cGMP pathway reduces phasic contractions in neonatal rat bladder strips via protein kinase G.
    Artim DE; Kullmann FA; Daugherty SL; Wu HY; de Groat WC
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F333-40. PubMed ID: 19493964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO Inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterase.
    Ortiz PA; Garvin JL
    Hypertension; 2001 Feb; 37(2 Pt 2):467-71. PubMed ID: 11230320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin II stimulates basolateral 10-pS Cl channels in the thick ascending limb.
    Wu P; Wang M; Luan H; Li L; Wang L; Wang WH; Gu R
    Hypertension; 2013 Jun; 61(6):1211-7. PubMed ID: 23569086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide reduces flow-induced superoxide production via cGMP-dependent protein kinase in thick ascending limbs.
    Hong NJ; Garvin JL
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1061-6. PubMed ID: 19244401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism.
    Núñez L; Vaquero M; Gómez R; Caballero R; Mateos-Cáceres P; Macaya C; Iriepa I; Gálvez E; López-Farré A; Tamargo J; Delpón E
    Cardiovasc Res; 2006 Oct; 72(1):80-9. PubMed ID: 16876149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes.
    Castro LR; Schittl J; Fischmeister R
    Circ Res; 2010 Nov; 107(10):1232-40. PubMed ID: 20847310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide decreases the permselectivity of the paracellular pathway in thick ascending limbs.
    Monzon CM; Garvin JL
    Hypertension; 2015 Jun; 65(6):1245-50. PubMed ID: 25895589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and protein kinase G act on TRPC1 to inhibit 11,12-EET-induced vascular relaxation.
    Zhang P; Ma Y; Wang Y; Ma X; Huang Y; Li RA; Wan S; Yao X
    Cardiovasc Res; 2014 Oct; 104(1):138-46. PubMed ID: 25139746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocrine effects of nitric oxide on HCO(3)(-) transport by rat thick ascending limb.
    Ortiz PA; Garvin JL
    Kidney Int; 2000 Nov; 58(5):2069-74. PubMed ID: 11044227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Iα (PKG-Iα) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Iα autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells.
    Wong JC; Fiscus RR
    J Cell Biochem; 2011 Mar; 112(3):829-39. PubMed ID: 21328456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.
    Hirooka K; Kourennyi DE; Barnes S
    J Neurophysiol; 2000 Jan; 83(1):198-206. PubMed ID: 10634867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous flow-induced nitric oxide reduces superoxide-stimulated Na/H exchange activity via PKG in thick ascending limbs.
    Hong NJ; Garvin JL
    Am J Physiol Renal Physiol; 2015 Mar; 308(5):F444-9. PubMed ID: 25503735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Cl-/OH- exchange activity in Caco-2 cells by nitric oxide.
    Saksena S; Gill RK; Syed IA; Tyagi S; Alrefai WA; Ramaswamy K; Dudeja PK
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G626-33. PubMed ID: 12181176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide increases the activity of the apical 70-pS K+ channel in TAL of rat kidney.
    Lu M; Wang X; Wang W
    Am J Physiol; 1998 May; 274(5):F946-50. PubMed ID: 9612333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide reduces paracellular resistance in rat thick ascending limbs by increasing Na
    Monzon CM; Occhipinti R; Pignataro OP; Garvin JL
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1035-F1043. PubMed ID: 28274930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.
    Takeda-Nakazawa H; Harada N; Shen J; Kubo N; Zenner HP; Yamashita T
    Hear Res; 2007 Aug; 230(1-2):93-104. PubMed ID: 17722255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.