BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26764269)

  • 1. A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.
    Kelly AE; Goulden ML
    Tree Physiol; 2016 Apr; 36(4):459-68. PubMed ID: 26764269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.
    Gimeno TE; Camarero JJ; Granda E; Pías B; Valladares F
    Tree Physiol; 2012 Mar; 32(3):326-36. PubMed ID: 22427371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.
    Reed CC; Loik ME
    Oecologia; 2016 May; 181(1):65-76. PubMed ID: 26822944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea.
    Venter M; Dwyer J; Dieleman W; Ramachandra A; Gillieson D; Laurance S; Cernusak LA; Beehler B; Jensen R; Bird MI
    Glob Chang Biol; 2017 Nov; 23(11):4873-4883. PubMed ID: 28560838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Winter forest soil respiration controlled by climate and microbial community composition.
    Monson RK; Lipson DL; Burns SP; Turnipseed AA; Delany AC; Williams MW; Schmidt SK
    Nature; 2006 Feb; 439(7077):711-4. PubMed ID: 16467835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England.
    Hadley JL; Schedlbauer JL
    Tree Physiol; 2002 Nov; 22(15-16):1079-92. PubMed ID: 12414368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.
    Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R
    Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change.
    Lempereur M; Martin-StPaul NK; Damesin C; Joffre R; Ourcival JM; Rocheteau A; Rambal S
    New Phytol; 2015 Aug; 207(3):579-90. PubMed ID: 25913661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Montane forest productivity across a semiarid climatic gradient.
    Knowles JF; Scott RL; Biederman JA; Blanken PD; Burns SP; Dore S; Kolb TE; Litvak ME; Barron-Gafford GA
    Glob Chang Biol; 2020 Dec; 26(12):6945-6958. PubMed ID: 32886444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment.
    Kuster TM; Arend M; Bleuler P; Günthardt-Goerg MS; Schulin R
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():138-47. PubMed ID: 22288508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.
    Stevens JT; Latimer AM
    Glob Chang Biol; 2015 Jun; 21(6):2379-93. PubMed ID: 25482316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.
    Chan AM; Bowling DR
    Tree Physiol; 2017 Jul; 37(7):984-995. PubMed ID: 28549168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal patterns of bole water content in old growth Douglas-fir (
    Beedlow PA; Waschmann RS; Lee EH; Tingey DT
    Agric For Meteorol; 2017 Aug; 242():109-119. PubMed ID: 30008496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.
    Bart RR; Tague CL; Moritz MA
    PLoS One; 2016; 11(8):e0161805. PubMed ID: 27575592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.
    Malhi Y; Doughty CE; Goldsmith GR; Metcalfe DB; Girardin CA; Marthews TR; Del Aguila-Pasquel J; Aragão LE; Araujo-Murakami A; Brando P; da Costa AC; Silva-Espejo JE; Farfán Amézquita F; Galbraith DR; Quesada CA; Rocha W; Salinas-Revilla N; Silvério D; Meir P; Phillips OL
    Glob Chang Biol; 2015 Jun; 21(6):2283-95. PubMed ID: 25640987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirically validated drought vulnerability mapping in the mixed conifer forests of the Sierra Nevada.
    Das AJ; Slaton MR; Mallory J; Asner GP; Martin RE; Hardwick P
    Ecol Appl; 2022 Mar; 32(2):e2514. PubMed ID: 35094444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees.
    Quentin AG; Crous KY; Barton CV; Ellsworth DS
    Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediterranean climate effects. II. Conifer growth phenology across a Sierra Nevada ecotone.
    Royce EB; Barbour MG
    Am J Bot; 2001 May; 88(5):919-32. PubMed ID: 11353717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediterranean climate effects. I. Conifer water use across a Sierra Nevada ecotone.
    Royce EB; Barbour MG
    Am J Bot; 2001 May; 88(5):911-8. PubMed ID: 11353716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.