These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26764612)

  • 1. Wall slip across the jamming transition of soft thermoresponsive particles.
    Divoux T; Lapeyre V; Ravaine V; Manneville S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):060301. PubMed ID: 26764612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criticality of the zero-temperature jamming transition probed by self-propelled particles.
    Liao Q; Xu N
    Soft Matter; 2018 Jan; 14(5):853-860. PubMed ID: 29308823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies.
    Olson Reichhardt CJ; Reichhardt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051306. PubMed ID: 21230472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts.
    Marschall TA; Teitel S
    Phys Rev E; 2019 Sep; 100(3-1):032906. PubMed ID: 31639991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology across the zero-temperature jamming transition.
    Paredes J; Michels MA; Bonn D
    Phys Rev Lett; 2013 Jul; 111(1):015701. PubMed ID: 23863014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jamming at zero temperature and zero applied stress: the epitome of disorder.
    O'Hern CS; Silbert LE; Liu AJ; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011306. PubMed ID: 12935136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-driven suspension flow near jamming.
    Oh S; Song YQ; Garagash DI; Lecampion B; Desroches J
    Phys Rev Lett; 2015 Feb; 114(8):088301. PubMed ID: 25768782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic criticality at the jamming transition.
    Ikeda A; Berthier L; Biroli G
    J Chem Phys; 2013 Mar; 138(12):12A507. PubMed ID: 23556758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear thickening and jamming in densely packed suspensions of different particle shapes.
    Brown E; Zhang H; Forman NA; Maynor BW; Betts DE; DeSimone JM; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031408. PubMed ID: 22060372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure distribution and critical exponent in statically jammed and shear-driven frictionless disks.
    Vågberg D; Wu Y; Olsson P; Teitel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022201. PubMed ID: 25353461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical scaling of shear viscosity at the jamming transition.
    Olsson P; Teitel S
    Phys Rev Lett; 2007 Oct; 99(17):178001. PubMed ID: 17995371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jamming of soft particles: geometry, mechanics, scaling and isostaticity.
    van Hecke M
    J Phys Condens Matter; 2010 Jan; 22(3):033101. PubMed ID: 21386274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscous forces and bulk viscoelasticity near jamming.
    Baumgarten K; Tighe BP
    Soft Matter; 2017 Nov; 13(45):8368-8378. PubMed ID: 29038802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverging viscosity and soft granular rheology in non-Brownian suspensions.
    Kawasaki T; Coslovich D; Ikeda A; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012203. PubMed ID: 25679615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of dynamic shear jamming in dense suspensions.
    Peters IR; Majumdar S; Jaeger HM
    Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress Relaxation above and below the Jamming Transition.
    Saitoh K; Hatano T; Ikeda A; Tighe BP
    Phys Rev Lett; 2020 Mar; 124(11):118001. PubMed ID: 32242697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinning Susceptibility: The Effect of Dilute, Quenched Disorder on Jamming.
    Graves AL; Nashed S; Padgett E; Goodrich CP; Liu AJ; Sethna JP
    Phys Rev Lett; 2016 Jun; 116(23):235501. PubMed ID: 27341244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discontinuous shear thickening in concentrated suspensions.
    Bossis G; Volkova O; Grasselli Y; Gueye O
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180211. PubMed ID: 30827207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jamming of particles in a two-dimensional fluid-driven flow.
    Guariguata A; Pascall MA; Gilmer MW; Sum AK; Sloan ED; Koh CA; Wu DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061311. PubMed ID: 23367936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.