These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26764631)

  • 21. Unsteady motion of a perfectly slipping sphere.
    Kabarowski JK; Khair AS
    Phys Rev E; 2020 May; 101(5-1):053102. PubMed ID: 32575193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large scale Brownian dynamics of confined suspensions of rigid particles.
    Sprinkle B; Balboa Usabiaga F; Patankar NA; Donev A
    J Chem Phys; 2017 Dec; 147(24):244103. PubMed ID: 29289140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating the viscoelastic moduli of complex fluids from observation of Brownian motion of a particle confined to a harmonic trap.
    Felderhof BU
    J Chem Phys; 2011 May; 134(20):204910. PubMed ID: 21639480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motion of a colloidal particle in an optical trap.
    Lukić B; Jeney S; Sviben Z; Kulik AJ; Florin EL; Forró L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011112. PubMed ID: 17677415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of particle-wall interactions during particle free fall.
    Chein R; Liao W
    J Colloid Interface Sci; 2005 Aug; 288(1):104-13. PubMed ID: 15927568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamics and Brownian motions of a spheroid near a rigid wall.
    De Corato M; Greco F; D'Avino G; Maffettone PL
    J Chem Phys; 2015 May; 142(19):194901. PubMed ID: 26001478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brownian dynamics of confined rigid bodies.
    Delong S; Balboa Usabiaga F; Donev A
    J Chem Phys; 2015 Oct; 143(14):144107. PubMed ID: 26472363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal.
    Turiv T; Lazo I; Brodin A; Lev BI; Reiffenrath V; Nazarenko VG; Lavrentovich OD
    Science; 2013 Dec; 342(6164):1351-4. PubMed ID: 24337292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas.
    Blum J; Bruns S; Rademacher D; Voss A; Willenberg B; Krause M
    Phys Rev Lett; 2006 Dec; 97(23):230601. PubMed ID: 17280186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brownian motion near an elastic cell membrane: A theoretical study.
    Daddi-Moussa-Ider A; Gekle S
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):19. PubMed ID: 29404712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension.
    Cui B; Diamant H; Lin B; Rice SA
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):258301. PubMed ID: 15245065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking.
    Dettmer SL; Keyser UF; Pagliara S
    Rev Sci Instrum; 2014 Feb; 85(2):023708. PubMed ID: 24593372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-time motion of Brownian particles in a shear flow.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of a magnetic active Brownian particle under a uniform magnetic field.
    Vidal-Urquiza GC; Córdova-Figueroa UM
    Phys Rev E; 2017 Nov; 96(5-1):052607. PubMed ID: 29347786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stochastic elastohydrodynamics of a microcantilever oscillating near a wall.
    Clarke RJ; Jensen OE; Billingham J; Pearson AP; Williams PM
    Phys Rev Lett; 2006 Feb; 96(5):050801. PubMed ID: 16486916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaussian field theory for the Brownian motion of a solvated particle.
    Speck T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):014103. PubMed ID: 23944593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the motion and placement of micrometer-sized metal particles using patterned polymer brush surfaces.
    Dunderdale GJ; Howse JR; Fairclough JP
    Langmuir; 2011 Oct; 27(19):11801-5. PubMed ID: 21851059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic field around a Brownian particle.
    Keblinski P; Thomin J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010502. PubMed ID: 16486111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.