These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26764631)

  • 41. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct measurement of the ballistic motion of a freely floating colloid in Newtonian and viscoelastic fluids.
    Hammond AP; Corwin EI
    Phys Rev E; 2017 Oct; 96(4-1):042606. PubMed ID: 29347607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brownian motion of optically anisotropic spherical particles in polymeric suspensions.
    Sánchez-Miranda MJ; Sarmiento-Gómez E; Arauz-Lara JL
    Eur Phys J E Soft Matter; 2015 Jan; 38(1):3. PubMed ID: 25618614
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brownian motion of tethered nanowires.
    Ota S; Li T; Li Y; Ye Z; Labno A; Yin X; Alam MR; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053010. PubMed ID: 25353883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics of a colloidal particle near a thermoosmotic wall under illumination.
    Lou X; Yu N; Liu R; Chen K; Yang M
    Soft Matter; 2018 Feb; 14(8):1319-1326. PubMed ID: 29368782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell.
    Felderhof BU; Sellier A
    J Chem Phys; 2012 Feb; 136(5):054703. PubMed ID: 22320755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brownian translation and rotation from the ballistic to the diffusive limit and derivation of the physical properties of dust agglomerates.
    Schubert B; Molinski NS; von Borstel I; Glißmann T; Balapanov D; Vedernikov A; Blum J
    Phys Rev E; 2023 Mar; 107(3-1):034136. PubMed ID: 37072960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme.
    Guo W; Hou G
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photophoresis of an aerosol sphere normal to a plane wall.
    Keh HJ; Hsu FC
    J Colloid Interface Sci; 2005 Sep; 289(1):94-103. PubMed ID: 16009221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Short-time inertial response of viscoelastic fluids measured with Brownian motion and with active probes.
    Atakhorrami M; Mizuno D; Koenderink GH; Liverpool TB; MacKintosh FC; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061508. PubMed ID: 18643273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motion of a Janus particle very near a wall.
    Rashidi A; Wirth CL
    J Chem Phys; 2017 Dec; 147(22):224906. PubMed ID: 29246055
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diffusive behavior of a thin particle layer in fluid by hydrodynamic interaction.
    Harada S; Otomo R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066311. PubMed ID: 20365271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force.
    Pierce F; Sorensen CM; Chakrabarti A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021411. PubMed ID: 17025429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the mobility of nonspherical particles in the free molecular regime.
    Li M; Mulholland GW; Zachariah MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022112. PubMed ID: 25353427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brownian motion of an ellipsoid.
    Han Y; Alsayed AM; Nobili M; Zhang J; Lubensky TC; Yodh AG
    Science; 2006 Oct; 314(5799):626-30. PubMed ID: 17068256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.