These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26764684)

  • 1. Survey of shock-wave structures of smooth-particle granular flows.
    Padgett DA; Mazzoleni AP; Faw SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062209. PubMed ID: 26764684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock front width and structure in supersonic granular flows.
    Boudet JF; Amarouchene Y; Kellay H
    Phys Rev Lett; 2008 Dec; 101(25):254503. PubMed ID: 19113715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traveling shock front in quasi-two-dimensional granular flows.
    Hu G; Li Y; Hou M; To K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011305. PubMed ID: 20365366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling.
    Duan Y; Feng ZG
    Phys Rev E; 2017 Dec; 96(6-1):062907. PubMed ID: 29347360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity.
    Hørlück S; Van Hecke M; Dimon P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021304. PubMed ID: 12636668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the complex flows induced by dual-swept/dual-ramp wedges in supersonic flows.
    Gao X; Xiang GX; Tang WJ; Jie XZ; Huang X; He JY; Liu SA
    Sci Rep; 2020 Jun; 10(1):9579. PubMed ID: 32533031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic model for sheared granular flows in the high Knudsen number limit.
    Kumaran V
    Phys Rev Lett; 2005 Sep; 95(10):108001. PubMed ID: 16196968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock wave propagation in vibrofluidized granular materials.
    Huang K; Miao G; Zhang P; Yun Y; Wei R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041302. PubMed ID: 16711788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
    Börzsönyi T; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061301. PubMed ID: 17280056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of two-dimensional sheared granular flows.
    Reddy KA; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061303. PubMed ID: 19658497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free boundary problems in shock reflection/diffraction and related transonic flow problems.
    Chen GQ; Feldman M
    Philos Trans A Math Phys Eng Sci; 2015 Sep; 373(2050):. PubMed ID: 26261363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations.
    Albaba A; Lambert S; Faug T
    Phys Rev E; 2018 May; 97(5-1):052903. PubMed ID: 29906957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular flows on a dissipative base.
    Louge MY; Valance A; Lancelot P; Delannay R; Artières O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022204. PubMed ID: 26382391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity distribution for a two-dimensional sheared granular flow.
    Bose M; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061301. PubMed ID: 15244554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion of size bidisperse spheres in dense granular shear flow.
    Cai R; Xiao H; Zheng J; Zhao Y
    Phys Rev E; 2019 Mar; 99(3-1):032902. PubMed ID: 30999464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision statistics of driven granular materials.
    Blair DL; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041301. PubMed ID: 12786356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lift force on an asymmetrical obstacle immersed in a dilute granular flow.
    Potiguar FQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061302. PubMed ID: 22304088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave propagation in a dynamic system of soft granular materials.
    Harada S; Takagi S; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061305. PubMed ID: 16241219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady granular flows in a rotating tumbler.
    Pohlman NA; Ottino JM; Lueptow RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031302. PubMed ID: 19905105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.