These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26764789)

  • 1. Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system.
    Heninger JM; Lippolis D; Cvitanović P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062922. PubMed ID: 26764789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How well can one resolve the state space of a chaotic map?
    Lippolis D; Cvitanović P
    Phys Rev Lett; 2010 Jan; 104(1):014101. PubMed ID: 20366364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics.
    Buhl M; Kennel MB
    Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact relations between homoclinic and periodic orbit actions in chaotic systems.
    Li J; Tomsovic S
    Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.
    Saiki Y; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scarring in classical chaotic dynamics with noise.
    Lippolis D; Shudo A; Yoshida K; Yoshino H
    Phys Rev E; 2021 May; 103(5):L050202. PubMed ID: 34134294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using periodic orbits to compute chaotic transport rates between resonance zones.
    Sattari S; Mitchell KA
    Chaos; 2017 Nov; 27(11):113104. PubMed ID: 29195324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical phase-space approach to the noisy Burgers equation: probability distributions.
    Fogedby HC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5065-80. PubMed ID: 11969463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstable periodic orbits and noise in chaos computing.
    Kia B; Dari A; Ditto WL; Spano ML
    Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractor switching by neural control of chaotic neurodynamics.
    Pasemann F; Stollenwerk N
    Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model.
    Gritsun A
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic dynamo model for subcritical transition.
    Fedotov S; Bashkirtseva I; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delay Fokker-Planck equations, Novikov's theorem, and Boltzmann distributions as small delay approximations.
    Frank TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011112. PubMed ID: 16089942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an associative memory using unstable periodic orbits of a chaotic attractor.
    Wagner C; Stucki JW
    J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic control and tracking of periodic orbits in chaotic systems.
    Ando H; Boccaletti S; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066211. PubMed ID: 17677344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
    Namikawa J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026204. PubMed ID: 16196681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Handy fluctuation-dissipation relation to approach generic noisy systems and chaotic dynamics.
    Baldovin M; Caprini L; Vulpiani A
    Phys Rev E; 2021 Sep; 104(3):L032101. PubMed ID: 34654124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traces and determinants of strongly stochastic operators.
    Dettmann CP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5231-4. PubMed ID: 11969480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.