These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26764789)
21. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Perc M; Marhl M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149 [TBL] [Abstract][Full Text] [Related]
22. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method. Azimi S; Ashtari O; Schneider TM Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314 [TBL] [Abstract][Full Text] [Related]
23. Stochastic bifurcation in a driven laser system: experiment and theory. Billings L; Schwartz IB; Morgan DS; Bollt EM; Meucci R; Allaria E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026220. PubMed ID: 15447578 [TBL] [Abstract][Full Text] [Related]
24. Towards the Resolution of a Quantized Chaotic Phase-Space: The Interplay of Dynamics with Noise. Lippolis D; Shudo A Entropy (Basel); 2023 Feb; 25(3):. PubMed ID: 36981299 [TBL] [Abstract][Full Text] [Related]
25. Statistics of unstable periodic orbits of a chaotic dynamical system with a large number of degrees of freedom. Kawasaki M; Sasa S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037202. PubMed ID: 16241619 [TBL] [Abstract][Full Text] [Related]
26. Phase synchronization in the forced Lorenz system. Park EH; Zaks MA; Kurths J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6627-38. PubMed ID: 11970583 [TBL] [Abstract][Full Text] [Related]
27. Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic systems with time delays. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031106. PubMed ID: 15903405 [TBL] [Abstract][Full Text] [Related]
28. Comment on "Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems". Zaks MA; Goldobin DS Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):018201; discussion 018202. PubMed ID: 20365510 [TBL] [Abstract][Full Text] [Related]
29. Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks. Laing CR Chaos; 2012 Dec; 22(4):043104. PubMed ID: 23278039 [TBL] [Abstract][Full Text] [Related]
30. Periodic orbits in chaotic systems simulated at low precision. Klöwer M; Coveney PV; Paxton EA; Palmer TN Sci Rep; 2023 Jul; 13(1):11410. PubMed ID: 37452044 [TBL] [Abstract][Full Text] [Related]
31. Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor. Jalnine AY; Kuznetsov SP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036220. PubMed ID: 18517498 [TBL] [Abstract][Full Text] [Related]
32. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
33. Dependence of chaotic diffusion on the size and position of holes. Knight G; Georgiou O; Dettmann CP; Klages R Chaos; 2012 Jun; 22(2):023132. PubMed ID: 22757539 [TBL] [Abstract][Full Text] [Related]
34. Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. Arecchi FT; Boccaletti S Chaos; 1997 Dec; 7(4):621-634. PubMed ID: 12779688 [TBL] [Abstract][Full Text] [Related]
35. Efficient noncausal noise reduction for deterministic time series. Brocker J; Parlitz U Chaos; 2001 Jun; 11(2):319-326. PubMed ID: 12779465 [TBL] [Abstract][Full Text] [Related]
36. Detecting unstable periodic orbits from transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6485-9. PubMed ID: 11088327 [TBL] [Abstract][Full Text] [Related]
37. Chaos computing in terms of periodic orbits. Kia B; Spano ML; Ditto WL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036207. PubMed ID: 22060475 [TBL] [Abstract][Full Text] [Related]
38. Subharmonic wave transition in a quasi-one-dimensional noisy fluidized shallow granular bed. Ortega I; Clerc MG; Falcón C; Mujica N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046208. PubMed ID: 20481808 [TBL] [Abstract][Full Text] [Related]
39. Noise-aided control of chaotic dynamics in a logistic map. Escalona J; Parmananda P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5987-9. PubMed ID: 11031665 [TBL] [Abstract][Full Text] [Related]
40. Canonical phase-space approach to the noisy Burgers equation. Fogedby HC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4950-3. PubMed ID: 11970362 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]