These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26764810)

  • 1. Dynamical features of the wake behind a pitching foil.
    Deng J; Sun L; Shao X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063013. PubMed ID: 26764810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional transition after wake deflection behind a flapping foil.
    Deng J; Caulfield CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043017. PubMed ID: 25974590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitions in the wake of a flapping foil.
    Godoy-Diana R; Aider JL; Wesfreid JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016308. PubMed ID: 18351935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propulsion performance of a two-dimensional flapping airfoil with wake map and dynamic mode decomposition analysis.
    Zheng H; Xie F; Zheng Y; Ji T; Zhu Z
    Phys Rev E; 2019 Jun; 99(6-1):063109. PubMed ID: 31330751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive wakes.
    Jallas D; Marquet O; Fabre D
    Phys Rev E; 2017 Jun; 95(6-1):063111. PubMed ID: 28709180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial wake transition past a thin pitching plate.
    De AK; Sarkar S
    Phys Rev E; 2021 Aug; 104(2-2):025106. PubMed ID: 34525617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wake and aeroelasticity of a flexible pitching foil.
    D'Adamo J; Collaud M; Sosa R; Godoy-Diana R
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Route to transition in propulsive performance of oscillating foil.
    Verma S; Hemmati A
    Phys Rev E; 2022 Apr; 105(4-2):045102. PubMed ID: 35590627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2008 Apr; 603():331-365. PubMed ID: 19746195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional instabilities for the flow around a heaving foil.
    Sun L; Deng J; Shao X
    Phys Rev E; 2018 Jan; 97(1-1):013110. PubMed ID: 29448369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase oscillations differently.
    Gungor A; Hemmati A
    Phys Rev E; 2020 Oct; 102(4-1):043104. PubMed ID: 33212661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-learning coupled map lattice for vortex shedding in cable and cylinder wakes.
    Balasubramanian G; Olinger DJ; Demetriou MA
    Chaos; 2004 Jun; 14(2):293-304. PubMed ID: 15189057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the evolution of the wake structure produced by a low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2005 Dec; 564():433-443. PubMed ID: 19746198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying a Superfluid Reynolds Number via Dynamical Similarity.
    Reeves MT; Billam TP; Anderson BP; Bradley AS
    Phys Rev Lett; 2015 Apr; 114(15):155302. PubMed ID: 25933320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region.
    Borazjani I; Sotiropoulos F
    J Fluid Mech; 2009; 621():321-364. PubMed ID: 19693281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nonharmonic forcing on bluff-body vortex dynamics.
    Konstantinidis E; Bouris D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045303. PubMed ID: 19518288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.