These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26764826)

  • 1. Wake control with permeable multilayer structures: The spherical symmetry case.
    Bowen PT; Smith DR; Urzhumov YA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063030. PubMed ID: 26764826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field.
    Hsu JP; Hsieh YH
    J Colloid Interface Sci; 2003 Mar; 259(2):301-8. PubMed ID: 16256510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary effect on the drag force on a nonhomogeneous floc.
    Hsu JP; Hsieh YH
    J Colloid Interface Sci; 2003 Aug; 264(2):517-25. PubMed ID: 16256673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion.
    Ginzburg I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066704. PubMed ID: 18643394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advective flow of permeable sphere in an electrical field.
    Yang Z; Lee DJ; Liu T
    J Colloid Interface Sci; 2010 Apr; 344(1):214-20. PubMed ID: 20070970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity relaxation of a porous sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    J Chem Phys; 2014 Apr; 140(13):134901. PubMed ID: 24712810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forces on a porous particle in an oscillating flow.
    Vainshtein P; Shapiro M
    J Colloid Interface Sci; 2009 Feb; 330(1):149-55. PubMed ID: 18977487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures.
    Grebenkov DS
    J Magn Reson; 2010 Aug; 205(2):181-95. PubMed ID: 20570195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boltzmann equation description of electron transport in an electric field with cylindrical or spherical symmetry.
    Date H; Shimozuma M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066410. PubMed ID: 11736285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves.
    Yao Y; Barbour RL; Wang Y; Graber HL; Chang J
    Appl Opt; 1996 Feb; 35(4):735-51. PubMed ID: 21069064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faxen's Laws of a Composite Sphere under Creeping Flow Conditions.
    Chen SB; Ye X
    J Colloid Interface Sci; 2000 Jan; 221(1):50-57. PubMed ID: 10623451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness.
    Keh HJ; Hsieh TH
    Langmuir; 2008 Jan; 24(2):390-8. PubMed ID: 18085803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness.
    Chen WJ; Keh HJ
    J Phys Chem B; 2013 Aug; 117(33):9757-67. PubMed ID: 23898800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering in spherically symmetric media.
    Perelman AY
    Appl Opt; 1979 Jul; 18(13):2307-14. PubMed ID: 20212651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetohydrodynamic motion of a colloidal sphere with self-electrochemical surface reactions in a spherical cavity.
    Hsieh TH; Keh HJ
    J Chem Phys; 2013 Feb; 138(7):074105. PubMed ID: 23444995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New, Spherical Solutions of Non-Relativistic, Dissipative Hydrodynamics.
    Kasza G; Csernai LP; Csörgő T
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.