These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26765070)
1. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration. Dai C; Zuo X; Cao B; Hu Y Environ Sci Technol; 2016 Feb; 50(4):1741-9. PubMed ID: 26765070 [TBL] [Abstract][Full Text] [Related]
2. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption. Dai C; Hu Y Environ Sci Technol; 2015 Jan; 49(1):292-300. PubMed ID: 25496643 [TBL] [Abstract][Full Text] [Related]
3. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz. Neil CW; Lee B; Jun YS Environ Sci Technol; 2014 Oct; 48(20):11883-91. PubMed ID: 25232994 [TBL] [Abstract][Full Text] [Related]
4. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening. Hu Y; Li Q; Lee B; Jun YS Environ Sci Technol; 2014; 48(1):299-306. PubMed ID: 24289329 [TBL] [Abstract][Full Text] [Related]
6. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. Gheju M; Balcu I J Hazard Mater; 2011 Nov; 196():131-8. PubMed ID: 21955659 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Geng B; Jin Z; Li T; Qi X Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139 [TBL] [Abstract][Full Text] [Related]
8. Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Niu SF; Liu Y; Xu XH; Lou ZH J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417 [TBL] [Abstract][Full Text] [Related]
9. (Fe, Cr)(OH) Zhang S; Cheng L; Zuo X; Cai D; Tong K; Hu Y; Ni J Environ Sci Technol; 2023 May; 57(19):7516-7525. PubMed ID: 37130379 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water. Liu Y; Deng L; Chen Y; Wu F; Deng N J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046 [TBL] [Abstract][Full Text] [Related]
13. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
14. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. Ray JR; Lee B; Baltrusaitis J; Jun YS Environ Sci Technol; 2012 Dec; 46(24):13167-75. PubMed ID: 23153372 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251 [TBL] [Abstract][Full Text] [Related]
16. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides. Hu Y; Lee B; Bell C; Jun YS Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400 [TBL] [Abstract][Full Text] [Related]
17. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Rivero-Huguet M; Marshall WD Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460 [TBL] [Abstract][Full Text] [Related]
18. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Zhu S; Huang X; Wang D; Wang L; Ma F Chemosphere; 2018 Sep; 207():50-59. PubMed ID: 29772424 [TBL] [Abstract][Full Text] [Related]
19. Application of Fe-Cu binary oxide nanoparticles for the removal of hexavalent chromium from aqueous solution. Khan SU; Zaidi R; Hassan SZ; Farooqi IH; Azam A Water Sci Technol; 2016; 74(1):165-75. PubMed ID: 27386994 [TBL] [Abstract][Full Text] [Related]
20. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]