BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 26765283)

  • 21. Simultaneously promoting the surface/bulk structural stability of Fe/Mn-based layered cathode for sodium ion batteries.
    Zhou Y; Sun M; Cao M; Zeng Y; Su M; Dou A; Hou X; Liu Y
    J Colloid Interface Sci; 2024 Mar; 657():472-481. PubMed ID: 38070333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.
    Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H
    ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery.
    Song J; Wang L; Lu Y; Liu J; Guo B; Xiao P; Lee JJ; Yang XQ; Henkelman G; Goodenough JB
    J Am Chem Soc; 2015 Feb; 137(7):2658-64. PubMed ID: 25679040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.
    Peng M; Li B; Yan H; Zhang D; Wang X; Xia D; Guo G
    Angew Chem Int Ed Engl; 2015 May; 54(22):6452-6. PubMed ID: 25864686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A carbon-coated spinel zinc cobaltate doped with manganese and nickel as a cathode material for aqueous zinc-ion batteries.
    Xing F; Shen X; Chen Y; Liu X; Chen T; Xu Q
    Dalton Trans; 2021 May; 50(17):5795-5806. PubMed ID: 33861278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper and Zirconium Codoped O3-Type Sodium Iron and Manganese Oxide as the Cobalt/Nickel-Free High-Capacity and Air-Stable Cathode for Sodium-Ion Batteries.
    Zheng YM; Huang XB; Meng XM; Xu SD; Chen L; Liu SB; Zhang D
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45528-45537. PubMed ID: 34520167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries.
    Lee S; Yoon G; Jeong M; Lee MJ; Kang K; Cho J
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1153-8. PubMed ID: 25470462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.
    Oh SM; Myung ST; Yoon CS; Lu J; Hassoun J; Scrosati B; Amine K; Sun YK
    Nano Lett; 2014 Mar; 14(3):1620-6. PubMed ID: 24524729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.
    Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced high voltage performance of LiNi
    Li R; Zhang P; Huang J; Liu B; Zhou M; Wen B; Luo Y; Okada S
    RSC Adv; 2021 Feb; 11(14):7886-7895. PubMed ID: 35423334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A High-Rate, Durable Cathode for Sodium-Ion Batteries: Sb-Doped O3-Type Ni/Mn-Based Layered Oxides.
    Yuan T; Li S; Sun Y; Wang JH; Chen AJ; Zheng Q; Zhang Y; Chen L; Nam G; Che H; Yang J; Zheng S; Ma ZF; Liu M
    ACS Nano; 2022 Nov; 16(11):18058-18070. PubMed ID: 36259968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries.
    Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL
    Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-Strain Reticular Sodium Manganese Oxide as an Ultrastable Cathode for Sodium-Ion Batteries.
    Shi WJ; Zhang D; Meng XM; Bao CX; Xu SD; Chen L; Wang XM; Liu SB; Wu YC
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14174-14184. PubMed ID: 32109045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.
    Sun R; Wei Q; Li Q; Luo W; An Q; Sheng J; Wang D; Chen W; Mai L
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20902-8. PubMed ID: 26328897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries.
    Xiang X; Zhang K; Chen J
    Adv Mater; 2015 Sep; 27(36):5343-64. PubMed ID: 26275211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.